UNT Libraries - 146 Matching Results

Search Results

A Study of the Processing Properties of Hard-Particle Reinforced Composite Solders

Description: The microstructural, mechanical and thermal properties of various composite solder formulations were investigated. Special interest was given in observing the processing properties, microstructural characteristics, fatigue behavior, tensile strength, and the effect of environmental ageing on the composite solder formulations. The solderability parameters wetting and speed of soldering, reflow temperature, and the thermal stability of the resulting composite solder were also examined.
Date: May 1994
Creator: Calderon, Jose Guadalupe

Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Description: The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. A linear correlation between the calculated hydrogen bond strength and the predicted 1H-NMR chemical shift was established. It is concluded that the pKa matching within the enzyme active site of the two species involved in the LBHB is important to maximizing catalytic stabilization.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Kumar, Ganesh Angusamy

Substitution Chemistry of the Cobalt Complexes [Co₂(CO)₆(PhC≡CR) (R=Ph, H) and PhCCo₃(CO)₉] with the Diphosphine Ligands [Bis(diphenylphosphino)maleic Anhydride (BMA) and (Z)-Ph₂PCH=CHPPh₂]. Reversible Chelate-to-Bridge Diphosphine Ligand Exchange, Phosphorus-Carbon Bond Cleavage and Phosphorus-Carbon Bond Formation

Description: The tricobalt cluster PhCCo3(CO)9 (1) reacts with the bidentate phosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in the presence of added Me3NO to give the diphosphine-substituted cluster PhCCo3(CO)7(bma) (2). Cluster 2 is unstable in solution, readily losing CO to afford Co3(CO)6[(μ2-η2/η1-C(Ph)C=C(PPh2)C(O)OC(O)](μ2-PPh2) (3) as the sole observed product. VT-31P NMR measurements on cluster 2 indicate that the bma ligand functions as both a chelating and a bridging ligand. At -97 °C, 31P NMR analysis of 2 reveals a Keq of 5.7 in favor of the bridging isomer. The bridged bma cluster 2 is the only observed species above -50°C. The solid-state structure of 2 does not correspond to the major bridging isomer observed in solution but rather the minor chelating isomer. The conversion of 2 to 3 followed first-order kinetics, with the reaction rates being independent of the nature of the reaction solvent and strongly suppressed by added CO, supporting a dissociative loss of CO as the rate-determining step. The activation parameters for CO loss were determined to be ΔH≠ = 29.9 ± 2.2 kcal/mol and ΔS≠ = 21.6 ± 6 eu.
Date: December 1994
Creator: Yang, Kaiyuan

Sulfur-induced Corrosion at Metal and Oxide Surfaces and Interfaces

Description: Sulfur adsorbed on metallic and oxide surfaces, whether originating from gaseous environments or segregating as an impurity to metallic interfaces, is linked to the deterioration of alloy performance. This research dealt with investigations on the interactions between sulfur and iron or iron alloy metallic and oxide surfaces under ultrahigh vacuum conditions. Sulfur was either intentionally dosed from a H2S source on an atomically clean metal surface, or segregated out as an impurity from the bulk to the metal surface by annealing at elevated temperatures.
Date: August 1997
Creator: Cabibil, Hyacinth (Hyacinth Liesl)

Surface and Interfacial Studies of Metal-Organic Chemical Vapor Deposition of Copper

Description: The nucleation and successful growth of copper (Cu) thin films on diffusion barrier/adhesion promoter substrates during metal-organic chemical vapor deposition (MOCVD) are strongly dependent on the initial Cu precursor-substrate chemistry and surface conditions such as organic contamination and oxidation. This research focuses on the interactions of bis(1,1,1,5,5,5-hexafluoroacetylacetonato)copper(II), [Cu(hfac)2], with polycrystalline tantalum (Ta) and polycrystalline as well as epitaxial titanium nitride (TiN) substrates during Cu MOCVD, under ultra-high vacuum (UHV) conditions and low substrate temperatures (T < 500 K). The results obtained from X-ray photoelectron spectroscopy (XPS), Auger Electron Spectroscopy (AES) and Temperature Programmed Desorption (TPD) measurements indicate substantial differences in the chemical reaction pathways of metallic Cu formation from Cu(hfac)2 on TiN versus Ta surfaces.
Date: December 1997
Creator: Nuesca, Guillermo M.

Syntheses of Antimetabolites

Description: In these studies several different types of antimetabolites were synthesized, and their biological effects were examined in various assay systems. More extensive investigations were done in microbial systems in which many of the compounds proved to be inhibitory to growth, and attempts were made to determine the mode of biochemical action by adding supplements of the appropriate natural metabolite.
Date: January 1970
Creator: Clifton, George Gil

Syntheses of Highly Strained Energetic Molecules and Development of New Synthetic Methodology

Description: The objective of this study was to synthesize new energetic, strained, saturated polycyclic compounds. For this purpose, new methodology has been developed, as follows: (i) Ketenes have been generated in situ via treatment of aldo-, keto- or alkenoic acid with either toluenesulfonyl chloride or 2-chloro-1-methylpyridfniurn iodide (Mulkaiyama's reagent). The reactive intermediates thereby generated have been found to undergo intramolecular [2+2] cycloaddition reactions in these systems.
Date: May 1987
Creator: Wu, An-hsiang

Synthesis and Characterization of Copper(II) Complexes

Description: A series of dihydroxy bridged copper(II) complexes of the type [(L)Cu(OH)₂Cu(L)]x₂ * nH₂0, where L is 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine or 1,10-phenanthroline, x is a counter ion, and n is the number of water molecules, was synthesized. In the case of monohydroxy bridged copper(II) complexes, we have found a new method of synthesis for [ (L)₂Cu(OH)Cu(L)₂ ] (ClO₄)₃, where L is 2,2'-bipyridine or 1,10-phenanthroline. We have synthesized five new monohydroxy bridged copper(II) complexes, thus increasing the number of monohydroxy bridged copper(II) complexes to nine. All complexes have been characterized by infrared spectroscopy, UV-visible spectroscopy, magnetic moments, and elemental analysis. The electron spin resonance results establish that the fulvic acids contain organic free radicals as an internal part of their molecular structure. The concentration of unpaired electrons will increase by increasing the pH. The unpaired electron in fulvic acid interacts with the unpaired electron on copper(II) through the Π system, and this will decrease the spin concentration of fulvic acid complexed with copper(II). The displacement of titration curve from a free ligand (fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phospherine, phosphothreonine, and 3-phosphoglyceric acid, to a ligand plus copper(II) (1:1 ratio) shows there is a strong interaction between copper(II) and the corresponding ligand. All complexes absorb UV-visible at 250-300 nm. The absorption intensity changes as a function of pH. Copper (II) forms a complex with fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phosphoserine, phosphothreonine, and 3-phosphoglyceric acid by the ratio of 1:3, 1:3, 1:1, 1:1, and 1:2, respectively.
Date: December 1984
Creator: Amani, Saeid

The Synthesis and Chemistry of Polyciclic Cage Compounds

Description: Chapter I describes the synthesis of a trishomocubyl helical tubuland diol and some aspects of its inclusion chemistry. Thus, all three isomers of 4,7-dimethylpentacyclo[^2,6.0^3,10.0^5,9]undecane-4,7-diol have been prepared and their X-ray structures have been determined. The syn,syn-isomer crystallizes in a double-stranded hydrogen-bonded lattice, while anti,syn-isomer forms a hydrogen-bonded layer lattice. In contrast, the anti,anti-isomer is a new member of the helical tubuland diol host family; its crystal lattice consists of parallel canals with a trefoil-shaped cross-section of area 25.4 Å^2. Chapter II describes the synthesis of new molecular clefts. These molecular clefts have been synthesized via base-promoted reactions of 3,6-diaryl-l,2,4,5-tetrazines with tetracyclo[^4,11.0^5,9]undecane-3,6-dione and with tricyclo[^2,6]undecane-3,11-dione, respectively. Compounds of this type are of interest as a potential new class of host molecules for use in host-guest complexation studies. Chapter III reports the synthesis of stereospecifically deuterated spiro(oxetane-3,8'-pentacyclo[^2,6.0^3,10.0^5,9]undecanes) and their acid-promoted ring opening and concomitant rearrangements. The deuterium-containing reaction products have been characterized via analysis of their NMR and mass spectra. The results strongly suggest that intramolecular 1,5-hydride shifts provide an important pathway through which the acid promoted rearrangements occur. Chapter IV reports the oxidation of heptacyclo-[^2,6.0^3,13.0^4,11.0^5,9.0^10,14] tetradecane (HCTD) via application of Barton's "GoAgg" systems. The products have been characterized by NMR and mass spectral analysis. Under GoAgg^v conditions, oxidation of HCTD proceeds to afford heptacyclo [^2,6.0^3,13.0^4,11.0^5,9.0^10,14]tetradecan-7-one in 1% yield.
Date: December 1994
Creator: Wang, Yanjun

Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.

Description: Symmetrical cage-annulated podands were synthesized via highly efficient synthetic strategies. Mechanisms to account for the key reaction steps in the syntheses are proposed; the proposed mechanisms receive support from the intermediates that have been isolated and characterized. An unusual complexation-promoted elimination reaction was studied, and a mechanism is proposed to account for the course of this reaction. This unusual elimination may generalized to other rigid systems and thus may extend our understanding of the role played by the host molecules in "cation-capture, anion-activation" via complexation with guest molecules. Thus, host-guest interaction serves not only to activate the anion but also may activate the leaving groups that participate in the complexation. Complexation-promoted elimination provides a convenient method to desymmetrize the cage while avoiding protection/deprotection steps. In addition, it offers a convenient method to prepare a chiral cage spacer by introducing 10 chiral centers into the host system in a single synthetic step. Cage-annulated monocyclic hosts that contain a cage-butylenoxy spacer were synthesized. Comparison of their metal ion complexation behavior as revealed by the results of electrospray ionization mass spectrometry (ESI-MS), alkali metal picrate extraction, and pseudohydroxide extraction with those displayed by the corresponding hosts that contain cage-ethylenoxy or cage-propylenoxy spacers reveals the effect of the length of the cage spacer upon the host-guest behavior. A series of cage-annulated cryptands, cavitands and the corresponding non-cage-annulated model compounds have been synthesized. These host molecules display unusual behavior when examined by using ESI-MS techniques, i.e., they bind selectively to smaller alkali metal ions (i.e., Li+ and Na+), a result that deviates significantly from expectations based solely upon consideration of the size-fit principle. It seems likely that this behavior results from the effect of the host topology on host-guest behavior. A series of non-cage-annulated cryptands also have been synthesized. These compounds can serve as starting ...
Date: May 2003
Creator: Chen, Zhibing

Synthesis and Reactions of Some N-Nitrosamines

Description: Nucleophiles react with the α-acetoxy derivative of α-hydroxybenzylbenzylnitrosamine at the carbonyl carbon of the acetoxy moiety followed by fragmentation to the very same intermediates formed by oxidative metabolism. Since α-acetoxybenzylbenzylnitrosamine has been shown to be able to acylate nucleophiles and since the nucleic acids are nucleophiles, then it is possible that this compound may cause mutations by an acylation pathway instead of or in addition to the more common alkylation pathway. The data in Part I of this dissertation should be considered in any further biological investigations of N,N-dialkylnitrosamine induced mutagenesis or carcinogenesis. The study of the synthesis, reactions, mutagenicity, and the possible correlation to compound liposolubility of cyclic N-nitrosamines was also investigated.
Date: December 1982
Creator: Gunn, Valerie E. (Valerie Elizabeth)

Synthesis and Structure of Polynitro- and Polymenthylpolycyclic "Cage" Monomers and Polymers

Description: The objective of this study was to synthesize and characterize new energetic polycyclic "cage" compounds. As part of a program involved in the synthesis of new polynitropolycyclic compounds, 2,6-dinitro-5-methoxy- 7-carbomethoxypentacyclo[5. 3 .0 . 0* • * . CP • i ° . 0* •8]decane has been synthesized. This is a model system which can be used to study (1) the effect of nitro substitution on the photolability of carbon-carbon double bonds and (2) to develop methods for avoiding Haller-Bauer cleavage in cage /3-keto esters when synthesizing polynitro-substituted cage compounds.
Date: May 1987
Creator: Jin, Pei-Wen

Synthesis and Study of Bioactive Compounds: I. Pyrethroids; II. Glutathione Derivatives

Description: Part I: In the first study of pyrethroids, twenty-one novel pyrethroid esters bearing strong electron-withdrawing groups (e.g., halomethylketo and nitro groups) in the double bond side chain of the cyclopropane acid moiety have been synthesized and evaluated for insect toxicity. Rather than the usually employed Wittig reaction for these syntheses, the novel pyrethroid acid moieties were prepared by amino acidcatalyzed Knoevenagel condensations under mild conditions. In the second study of pyrethroids, fourteen pyrethroid-like carbonates were synthesized by condensation of a variety of alcohols and the chloroformates of the corresponding known pyrethroid alcohols.
Date: May 1995
Creator: Chyan, Ming-Kuan

Synthesis and Study of Metabolic Antagonists

Description: The central nature of nicotinamide in metabolic processes as a part of the NAD and NADP coenzyme systems prompted the synthesis of a series of N-nicotinyl- and N-isonicotinyl-N'- (substituted)ureas as potential metabolite antagonists of the vitamin. The compounds which were synthesized may be represented by the following general structure, where R = hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, cyclohexyl, phenyl and a-naphthyl. The observed toxicity of the N-nicotinyl-N'-(substituted)urea analogs may be attributed to the formation of a non-functional N-nicotinyl-N'-(substituted)urea-NAD analog through an exchange reaction catalyzed by NAD-ases in the cell. Support for this view was obtained by an in vitro enzymic synthesis of Nnicotinyl- N'-ethylurea-NAD analog employing N-nicotinyl-7- 1 4CN'- ethylurea. The labeled derivative was characterized through spectral, chromatographic, and chemical reaction studies.
Date: August 1973
Creator: Masingale, Robert Edesta

Synthesis, characterization, and kinetics of isomerization, C-H and P-C bond activation for unsaturated diphosphine-coordinated triosmium carbonyl clusters.

Description: Substitution of MeCN ligands in the activated cluster Os3(CO)10(MeCN)2 by the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2 (cDPPEn) or 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) proceeds rapidly at room temperature to furnish the ligand-bridged cluster 1,2-Os3(CO)10(P-P) (P-P represents cDPPEn or bpcd). Heating 1,2-Os3(CO)10(P-P) leads to the formation of the thermodynamically more stable chelating isomer 1,1-Os3(CO)10(P-P). Each compound of Os3(CO)10(P-P) has been characterized by x-ray diffraction, IR, 31P NMR and 1H NMR. Ligand isomerization kinetics have been investigated by UV-VIS and 31P NMR (for cDPPEn) or 1H NMR (for bpcd) spectroscopies. The isomerization mechanism is discussed based on the activation parameters and CO inhibition (for cDPPEn) or ligand trapping experiments (for bpcd). Thermolysis of 1,1-Os3(CO)10(bpcd) in refluxing toluene gives the hydrido cluster HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] and the benzyne cluster HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)]. Photolysis of 1,1-Os3(CO)10(bpcd) using near UV light affords HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] as the sole product. HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)] has been characterized in solution by IR and NMR spectroscopies. Furthermore its molecular structure has been determined by X-ray crystallography. Reversible C-H bond formation in HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] is demonstrated by ligand trapping studies to give 1,1-Os3(CO)9L(bpcd) (where L = CO, phosphine) via the unsaturated intermediate 1,1-Os3(CO)9(bpcd). The kinetics for reductive coupling in HOs3(CO)9[γ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] and DOs3(CO)9[μ-(PPh2-d10)C=C{P(Ph-d5)(C6D4)}C(O)CH2C(O)] in the presence of PPh3 give rise to a kH/kD value of 0.88, whose magnitude supports the existence of a preequilibrium involving the hydride(deuteride) cluster and a transient arene-bound Os3 species that precedes the rate-limiting formation of 1,1-Os3(CO)9(bpcd). Strong proof for the proposed hydride(deuteride)/arene preequilibrium has been obtained from photochemical studies employing the isotopically labeled cluster 1,1-Os3(CO)10(bpcd-d4ortho), whose bpcd phenyl groups each contain one ortho hydrogen and deuterium atom. Equilibrium and kinetic isotope effects in the orthometallation step has been determined by 1H NMR in photochemical studies. Kinetics for the transformation from HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] to HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)] has been studied by UV-VIS spectroscopy for which the mechanism is discussed.
Date: May 2008
Creator: Wu, Guanmin

Synthesis of Ketene Thioacetals and Their Monosulfoxide Derivatives and the Thermal Rearrangements of Diallylic Ketene Thioacetals

Description: Ketene dimethyl thioacetal monosulfoxide was prepared in 68% overall yield in two steps starting from methylmagnesium chloride. The yield of dithioacetic acid was improved significantly by employing tetrahydrofuran as solvent and using elevated temperatures. A one-pot synthesis of ketene thioacetals from alkyl halides was developed and several ketene thioacetals were prepared by this method. Direct oxidation of ketene thioacetals using m-chloroperoxybenzoic acid provided a general route to ketene thioacetal monosulfoxides. In cases where E and Z isomeric ketene thioacetal monosulfoxides were possible, the E/Z isomeric ratio increased as the substituents on the ketene double bond was increased in size.
Date: August 1982
Creator: Kaya, Riza

Synthetic Applications of Ketene Cycloadditions Lactams and Coumarins

Description: The objective of this study was to develop new synthetical routes to natural and industrial products utilizing ketene cycioaddition reactions. The cycioaddition of diphenylketene with α,β-unsaturated imines yields (2+2) cycioaddition products, g-lactams. However, electron donating groups, such as dimethylamine, in the 4-position of the α,β-unsaturated imines result in (4+2) cycloaddition products, ∂-lactams. Dichloroketene reacted with α,β-unsaturated imines to yield (4+2) cycloaddition products, g-lactams. Large substituents in the 4-position of a, ^-unsaturated imines resulted in a (2+2) cycioaddition product, β-lactam. The ∂-lactams derived from dichloroketene are easily dehydrochlorinated to the corresponding 2-pyridornes.
Date: August 1984
Creator: Shieh, Chia Hui

Synthetic Applications of Ketene Cycloadditions: Natural and Novel Pyrethroid Insecticides

Description: A new synthetic route to natural and novel pyrethroid acids was developed utilizing ketene cycloaddition which is a significant improvement over existing syntheses. The newly synthesized pyrethroid acids were converted to pyrethroid esters and used to study structure-activity relationships. The cycloaddition of dichloroketene with 2,5-dimethyl-2,4-hexadiene yields (2+2) cycloaddition products, 2,2-dichlorocyclobutanones. The reductive removal of one chlorine atom from these cycloaddition products gave monochlorocyclobutanones which underwent a Favorskii-type ring contraction to yield cis- and trans-chrysanthemic acids. 4-Methyl-1,3-pentadiene was also used as a precursor in this synthetic scheme to yield an analogue of the chrysanthemic acid. These results are consistent with a concerted cycloaddition process involving a dipolar transition state. The zinc reduction is not a regiospecific reaction which accounts for the two regioisomers of the monochlorocyclobutanones. The Favorskii-type ring contraction is a regiospecific reaction. A variety of different bicyclo(3.1.0)alkenecarboxylates and bicyclo(4.1.0)heptenecarboxylates were synthesized from alkylcyclopentadiene and fulvene derivatives. These new bicyclo pyrethroid acids are structurally similar to the natural chrysanthemic acid but are rigid and locked in a single conformation which is likely the least stable conformer of the natural acid. The acids were converted to pyrethroid esters and tested against the housefly and cockroach. The test results indicate that the bicyclo pyrethroids synthesized are not as active as the natural pyrethroid. Apparently, these bicyclo pyrethroids with structures similar to the less stable conformer of the natural pyrethroids are of little consequence as it binds to the target site in the insect. In an effort to learn more about the conformational requirements of the pyrethroid acid, a new bicyclo-spiro pyrethroid system with a structure similar to the most stable conformation of the natural pyrethroid was designed and synthesized. These bicyclo-spiro pyrethroids were derived from a new isopropylidenecyclobutane derivatives as a starting compound instead of a conjugated diene. The test results of ...
Date: August 1985
Creator: Ko, Jinren

Thermal and Flash Photolysis Studies of Ligand-Exchange Reactions of Substituted Metal Carbonyl Complexes of Cr and Mo

Description: Thermal and flash photolysis studies of ligand-substitution reactions of cis-(pip)(L)M(CO)_4 by L' (pip = piperidine; L, L' = CO, phosphines, phosphites; M = Cr, Mo) implicate square-pyramidal [(L)M(CO)_4], in which L occupies a coordination site in the equatorial plane, as the reactive species. In chlorobenzene (= CB) solvent, the predominant species formed after flash photolysis and a steady-state intermediate for the thermal reaction is cis—[(CB)(L)M(CO)_4], for which rates of CB-dissociation increase with increasing steric demands of coordinated L. Rates of CB-dissociation from trans-[(CB)(L)M(CO)_4] intermediates, formed after photolysis but not thermally, exhibit no observable dependence on the steric properties of the coordinated L.
Date: May 1989
Creator: Awad, Hani H. (Hani Hanna)

Thermal Reactions of Four-Membered Rings Containing Silicon or Germanium

Description: The synthesis of E- and Z-1,1,2,3-tetramethylsilacyclobutanes is described. Pyrolysis of either isomer at 398.2 °C provides the same products but in different amounts: propene, E- and Z-2-butene, allylethyldimethylsilane, dimethylpropylsilane, the respective geometric isomers, 1,1,2,3,3-pentamethyl-1,3-disilacyclobutane, 1,1, l-ethyldimethyl-2,2,2-vinyldimethyl-disilane and E- and Z-1,1,2,3,3,4-hexamethyl-1,3-disilacyclobutane. Mechanisms involving di- and trimethylsilenes are described for disilane formation and rate constants of the elementary steps for the fragmentation reactions are reported. Photochemically generated dimethylsilylene in the hydrocarbon solution inserts into the cyclic Ge-C or Si-C bonds of 1,1-dimethylgerma- or silacyclobutane to produce 1-germa-2-sila- or 1,2-disilacyclopentane. The relative reactivities of 1,1-dimethylgerma- and silacyclobutanes toward the dimethylsilylene have been determined. The carbenoid resulting from the cuprous chloride catalyzed decomposition of diazomethane at 25 °C in cyclohexane reacts with 1,1-dimethylgermacyclobutane to give, surprisingly 1,1,5,5-tetramethyl-1,5-digermacyclooctane as the major product. The reactions of the carbenoid with 1,1-dimethylsilacyclobutane are described. The kinetics of gas phase thermal decomposition of 1,1-dimethylgermacyclobutane has been studied over the temperature range, 684 - 751 K at pressures near 14 Torr. The Arrhenius parameters for the formation of ethylene are k_1 (s^-1) = 10^(14.6 ± 0.3) exp (62.7 ± 2.9 kcal mol^-1/RT) and those for the formation of propene and cyclopropane are k_2 (s^-1) = 10^(14.0 ± 0.1 ) exp (60.4 ± 2.8 kcal mol^-1/RT). Static gas phase pyrolyses of 1,1-dimethyl-lsilacyclobutene, DMSCB, in the presence of a variety of alkenes and alkynes at 260 - 365 °C have been studied. Our experimental results suggest that under these conditions the DMSCB ring opens to 1,1-dimethyl-l-silabutadiene, which either recyclizes to DMSCB or reacts with alkenes or alkynes in competing 4 + 2 and 2 + 2 cycloadditions.
Date: December 1988
Creator: Namavari, Mohammad, 1950-

Thermochemical investigations of crystalline solutes in non-electrolyte solutions: Mathematical representation of solubility data and the development of predictive solubility equations in systems with specific and non-specific interactions.

Description: Understanding the thermodynamic properties of multicomponent mixtures is of critical importance in many chemical and industrial applications. Experimental measurements become progressively difficult as the number of solution components increases -- producing the need for predictive models. Problems in development of predictive models arise if the mixture has one or more components that interact through molecular complexation or association. Experimental solubilities of anthracene and pyrene dissolved in binary systems containing one or more alcohols were measured in order to address this problem. Alcohols examined in this study were: 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, and 1-octanol. In binary solvent mixtures containing only a single self-associating alcoholic solvent, the alkane cosolvents studied were: n-hexane, n-heptane, n-octane, 2,2,4-trimethylpentane, cyclohexane, methylcyclohexane, tert-butylcyclohexane. Predictive solubility equations were developed using mobile order theory. This approach differs from classical solution models by representing hydrogen bonding with a probability term rather than with expressions derived from stepwise equilibria or expressions to represent hypothetical solution aggregates. Results were compared with the predicted solubilities found from using expressions developed using the Kretschmer-Wiebe and Mecke-Kempter approaches for modeling associated solutions. It was found that the mobile order approach provided reasonably accurate predictions for the solute solubilities in the systems studied. The limitations and applications for mathematical methods of representing experimental isothermal solubility data were also studied for 72 systems. Two possible descriptive forms for this mathematical representation were suggested based on the various nearly ideal binary solvent (NIBS) and modified Wilson models.
Date: May 2008
Creator: Zvaigzne, Anita Ilze

Thermochemical Study of Crystalline Solutes Dissolved in Ternary Hydrogen-Bonding Solvent Mixtures

Description: The purpose of this dissertation is to investigate the thermochemical properties of nonelectrolyte solutes dissolved in ternary solvent mixtures, and to develop mathematical expressions for predicting and describing behavior in the solvent mixtures. Forty-five ternary solvent systems were studied containing an ether (Methyl tert-butyl ether, Dibutyl ether, or 1,4-Dioxane), an alcohol (1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, or 2-Methyl-1-propanol), and an alkane (Cyclohexane, Heptane, or 2,2,4-Trimethylpentane) cosolvents. The Combined NIBS (Nearly Ideal Binary Solvent)/Redlich-Kister equation was used to assess the experimental data. The average percent deviation between predicted and observed values was less than ± 2 per cent error, documenting that this model provides a fairly accurate description of the observed solubility behavior. In addition, Mobile Order theory, the Kretschmer-Wiebe model, and the Mecke-Kempter model were extended to ternary solvent mixtures containing an alcohol (or an alkoxyalcohol) and alkane cosolvents. Expressions derived from Mobile Order theory predicted the experimental mole fraction solubility of anthracene in ternary alcohol + alkane + alkane mixtures to within ± 5.8%, in ternary alcohol + alcohol + alkane mixtures to within ± 4.0%, and in ternary alcohol + alcohol + alcohol mixtures to within ± 3.6%. In comparison, expressions derived from the Kretschmer-Wiebe model and the Mecke-Kempter model predicted the anthracene solubility in ternary alcohol + alkane + alkane mixtures to within ± 8.2% and ± 8.8%, respectively. The Kretschmer-Wiebe model and the Mecke-Kempter model could not be extended easily to systems containing two or more alcohol cosolvents.
Date: May 2001
Creator: Pribyla, Karen J.

Thermodynamic and Structural Studies of Layered Double Hydroxides

Description: The preparation of layered double hydroxides via titration with sodium hydroxide was thoroughly investigated for a number of M(II)/M(III) combinations. These titration curves were examined and used to calculate nominal solubility product constants and other thermodynamic quantities for the various LDH chloride systems.
Date: May 1998
Creator: Boclair, Joseph W. (Joseph Walter)