UNT Libraries - 198 Matching Results

Search Results

Keywords in the mist: Automated keyword extraction for very large documents and back of the book indexing.

Description: This research addresses the problem of automatic keyphrase extraction from large documents and back of the book indexing. The potential benefits of automating this process are far reaching, from improving information retrieval in digital libraries, to saving countless man-hours by helping professional indexers creating back of the book indexes. The dissertation introduces a new methodology to evaluate automated systems, which allows for a detailed, comparative analysis of several techniques for keyphrase extraction. We introduce and evaluate both supervised and unsupervised techniques, designed to balance the resource requirements of an automated system and the best achievable performance. Additionally, a number of novel features are proposed, including a statistical informativeness measure based on chi statistics; an encyclopedic feature that taps into the vast knowledge base of Wikipedia to establish the likelihood of a phrase referring to an informative concept; and a linguistic feature based on sophisticated semantic analysis of the text using current theories of discourse comprehension. The resulting keyphrase extraction system is shown to outperform the current state of the art in supervised keyphrase extraction by a large margin. Moreover, a fully automated back of the book indexing system based on the keyphrase extraction system was shown to lead to back of the book indexes closely resembling those created by human experts.
Date: May 2008
Creator: Csomai, Andras

A Language and Visual Interface to Specify Complex Spatial Pattern Mining

Description: The emerging interests in spatial pattern mining leads to the demand for a flexible spatial pattern mining language, on which easy to use and understand visual pattern language could be built. It is worthwhile to define a pattern mining language called LCSPM to allow users to specify complex spatial patterns. I describe a proposed pattern mining language in this paper. A visual interface which allows users to specify the patterns visually is developed. Visual pattern queries are translated into the LCSPM language by a parser and data mining process can be triggered afterwards. The visual language is based on and goes beyond the visual language proposed in literature. I implemented a prototype system based on the open source JUMP framework.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Li, Xiaohui

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP design. The PLL parasitic-aware optimization achieves a 10× speedup and a 147 µW power reduction. Thus the experimental results validate the effectiveness of the proposed solution.
Date: May 2013
Creator: Zheng, Geng

Learning from small data set for object recognition in mobile platforms.

Description: Did you stand at a door with a bunch of keys and tried to find the right one to unlock the door? Did you hold a flower and wonder the name of it? A need of object recognition could rise anytime and any where in our daily lives. With the development of mobile devices object recognition applications become possible to provide immediate assistance. However, performing complex tasks in even the most advanced mobile platforms still faces great challenges due to the limited computing resources and computing power. In this thesis, we present an object recognition system that resides and executes within a mobile device, which can efficiently extract image features and perform learning and classification. To account for the computing constraint, a novel feature extraction method that minimizes the data size and maintains data consistency is proposed. This system leverages principal component analysis method and is able to update the trained classifier when new examples become available . Our system relieves users from creating a lot of examples and makes it user friendly. The experimental results demonstrate that a learning method trained with a very small number of examples can achieve recognition accuracy above 90% in various acquisition conditions. In addition, the system is able to perform learning efficiently.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Liu, Siyuan

Logic Programming Tools for Dynamic Content Generation and Internet Data Mining

Description: The phenomenal growth of Information Technology requires us to elicit, store and maintain huge volumes of data. Analyzing this data for various purposes is becoming increasingly important. Data mining consists of applying data analysis and discovery algorithms that under acceptable computational efficiency limitations, produce a particular enumeration of patterns over the data. We present two techniques based on using Logic programming tools for data mining. Data mining analyzes data by extracting patterns which describe its structure and discovers co-relations in the form of rules. We distinguish analysis methods as visual and non-visual and present one application of each. We explain that our focus on the field of Logic Programming makes some of the very complex tasks related to Web based data mining and dynamic content generation, simple and easy to implement in a uniform framework.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2000
Creator: Gupta, Anima

Maintaining Web Applications Integrity Running on RADIUM

Description: Computer security attacks take place due to the presence of vulnerabilities and bugs in software applications. Bugs and vulnerabilities are the result of weak software architecture and lack of standard software development practices. Despite the fact that software companies are investing millions of dollars in the research and development of software designs security risks are still at large. In some cases software applications are found to carry vulnerabilities for many years before being identified. A recent such example is the popular Heart Bleed Bug in the Open SSL/TSL. In today’s world, where new software application are continuously being developed for a varied community of users; it’s highly unlikely to have software applications running without flaws. Attackers on computer system securities exploit these vulnerabilities and bugs and cause threat to privacy without leaving any trace. The most critical vulnerabilities are those which are related to the integrity of the software applications. Because integrity is directly linked to the credibility of software application and data it contains. Here I am giving solution of maintaining web applications integrity running on RADIUM by using daikon. Daikon generates invariants, these invariants are used to maintain the integrity of the web application and also check the correct behavior of web application at run time on RADIUM architecture in case of any attack or malware. I used data invariants and program flow invariants in my solution to maintain the integrity of web-application against such attack or malware. I check the behavior of my proposed invariants at run-time using Lib-VMI/Volatility memory introspection tool. This is a novel approach and proof of concept toward maintaining web application integrity on RADIUM.
Date: August 2015
Creator: Ur-Rehman, Wasi

Measuring Semantic Relatedness Using Salient Encyclopedic Concepts

Description: While pragmatics, through its integration of situational awareness and real world relevant knowledge, offers a high level of analysis that is suitable for real interpretation of natural dialogue, semantics, on the other end, represents a lower yet more tractable and affordable linguistic level of analysis using current technologies. Generally, the understanding of semantic meaning in literature has revolved around the famous quote ``You shall know a word by the company it keeps''. In this thesis we investigate the role of context constituents in decoding the semantic meaning of the engulfing context; specifically we probe the role of salient concepts, defined as content-bearing expressions which afford encyclopedic definitions, as a suitable source of semantic clues to an unambiguous interpretation of context. Furthermore, we integrate this world knowledge in building a new and robust unsupervised semantic model and apply it to entail semantic relatedness between textual pairs, whether they are words, sentences or paragraphs. Moreover, we explore the abstraction of semantics across languages and utilize our findings into building a novel multi-lingual semantic relatedness model exploiting information acquired from various languages. We demonstrate the effectiveness and the superiority of our mono-lingual and multi-lingual models through a comprehensive set of evaluations on specialized synthetic datasets for semantic relatedness as well as real world applications such as paraphrase detection and short answer grading. Our work represents a novel approach to integrate world-knowledge into current semantic models and a means to cross the language boundary for a better and more robust semantic relatedness representation, thus opening the door for an improved abstraction of meaning that carries the potential of ultimately imparting understanding of natural language to machines.
Date: August 2011
Creator: Hassan, Samer

Measuring Vital Signs Using Smart Phones

Description: Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the multimedia elements in the phone from a remote location. This would help the call-taker or first responder to have a better control over the situation. Transmission of the vital signs measured using the smart phone can be a life saver in critical situations. In today's voice oriented 9-1-1 calls, the dispatcher first collects critical information (e.g., location, call-back number) from caller, and assesses the situation. Meanwhile, the dispatchers constantly face a "60-second dilemma"; i.e., within 60 seconds, they need to make a complicated but important decision, whether to dispatch and, if so, what to dispatch. The dispatchers often feel that ...
Date: December 2010
Creator: Chandrasekaran, Vikram

Mediation on XQuery Views

Description: The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm to decompose an outsourced query into atomic queries which are each executed on a single data source. I also developed an algorithm to generate integrating queries, which the system uses to compose the answers from the atomic queries into a single answer to the original user query. I present a proof of both the extended XML document projection algorithm and the query integration algorithm. An analysis of the efficiency of the new extended algorithm is also presented. Finally I describe a collaborative schema-matching tool that was implemented to facilitate maintaining metadata.
Date: December 2006
Creator: Peng, Xiaobo

Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Description: Implementing a Prolog Runtime System in a language like Java which provides its own automatic memory management and safety features such as built--in index checking and array initialization requires a consistent approach to memory management based on a simple ultimate goal: minimizing total memory management time and extra space involved. The total memory management time for Jinni is made up of garbage collection time both for Java and Jinni itself. Extra space is usually requested at Jinni's garbage collection. This goal motivates us to find a simple and practical garbage collection algorithm and implementation for our Prolog engine. In this thesis we survey various algorithms already proposed and offer our own contribution to the study of garbage collection by improvements and optimizations for some classic algorithms. We implemented these algorithms based on the dynamic array algorithm for an all--dynamic Prolog engine (JINNI 2000). The comparisons of our implementations versus the originally proposed algorithm allow us to draw informative conclusions on their theoretical complexity model and their empirical effectiveness.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2001
Creator: Zhou, Qinan

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Description: Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their accuracy and application to AMS-SoCs. Several different optimization algorithms are compared for global optimization accuracy and convergence. Three different AMS circuits, ring oscillator, inductor-capacitor voltage-controlled oscillator (LC-VCO) and phase locked loop (PLL) that are present in many AMS-SoC are used in this study for design flow application. Metamodels created in this dissertation provide accuracy with an error of less than 2% from the physical layout simulations. After optimal sampling investigation, metamodel functions and optimization algorithms are ranked in terms of speed and accuracy. Experimental results show that the proposed design flow provides roughly 5,000x speedup over conventional design flows. Thus, ...
Date: May 2012
Creator: Garitselov, Oleg

A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations

Description: Natural language is inherently ambiguous. For example, the word "bank" can mean a financial institution or a river shore. Finding the correct meaning of a word in a particular context is a task known as word sense disambiguation (WSD), which is essential for many natural language processing applications such as machine translation, information retrieval, and others. While most current WSD methods try to disambiguate a small number of words for which enough annotated examples are available, the method proposed in this thesis attempts to address all words in unrestricted text. The method is based on constraints imposed by syntactic dependencies and concept generalizations drawn from an external dictionary. The method was tested on standard benchmarks as used during the SENSEVAL-2 and SENSEVAL-3 WSD international evaluation exercises, and was found to be competitive.
Date: December 2005
Creator: Faruque, Md. Ehsanul

Mobile agent security through multi-agent cryptographic protocols.

Description: An increasingly promising and widespread topic of research in distributed computing is the mobile agent paradigm: code travelling and performing computations on remote hosts in an autonomous manner. One of the biggest challenges faced by this new paradigm is security. The issue of protecting sensitive code and data carried by a mobile agent against tampering from a malicious host is particularly hard but important. Based on secure multi-party computation, a recent research direction shows the feasibility of a software-only solution to this problem, which had been deemed impossible by some researchers previously. The best result prior to this dissertation is a single-agent protocol which requires the participation of a trusted third party. Our research employs multi-agent protocols to eliminate the trusted third party, resulting in a protocol with minimum trust assumptions. This dissertation presents one of the first formal definitions of secure mobile agent computation, in which the privacy and integrity of the agent code and data as well as the data provided by the host are all protected. We present secure protocols for mobile agent computation against static, semi-honest or malicious adversaries without relying on any third party or trusting any specific participant in the system. The security of our protocols is formally proven through standard proof technique and according to our formal definition of security. Our second result is a more practical agent protocol with strong security against most real-world host attacks. The security features are carefully analyzed, and the practicality is demonstrated through implementation and experimental study on a real-world mobile agent platform. All these protocols rely heavily on well-established cryptographic primitives, such as encrypted circuits, threshold decryption, and oblivious transfer. Our study of these tools yields new contributions to the general field of cryptography. Particularly, we correct a well-known construction of the encrypted circuit and give ...
Date: May 2004
Creator: Xu, Ke

Mobile-Based Smart Auscultation

Description: In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be used by public or clinical health workers. This application can detect abnormal heart sounds with up to 92-98% accuracy. In addition, the application can record, but not yet classify, lung sounds. This application will be able to help save thousands of lives by allowing anyone to identify abnormal heart and lung sounds.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Chitnis, Anurag Ashok

Modeling Alcohol Consumption Using Blog Data

Description: How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Date: May 2013
Creator: Koh, Kok Chuan

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless of the intention type, identifying it, evaluating it, and taking actions by using it to prevent any malicious intentions are the main goals of this research. The following four different security vulnerabilities are identified in this research: Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, and compromised authentication. These four vulnerabilities are solved by detecting malware applications, identifying malicious users in a social network, enhancing the encryption system of a phone communication, and identifying user activities using electroencephalogram (EEG) for authentication. Each of these solutions are constructed using the idea of intention identification. Furthermore, many of ...
Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed

Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Description: Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the Human Computer Interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it ...
Date: August 2013
Creator: Gupta, Neeraj Kant

Modeling and reduction of gate leakage during behavioral synthesis of nanoscale CMOS circuits.

Description: The major sources of power dissipation in a nanometer CMOS circuit are capacitive switching, short-circuit current, static leakage and gate oxide tunneling. However, with the aggressive scaling of technology the gate oxide direct tunneling current (gate leakage) is emerging as a prominent component of power dissipation. For sub-65 nm CMOS technology where the gate oxide (SiO2) thickness is very low, the direct tunneling current is the major form of tunneling. There are two contribution parts in this thesis: analytical modeling of behavioral level components for direct tunneling current and propagation delay, and the reduction of tunneling current during behavioral synthesis. Gate oxides of multiple thicknesses are useful in reducing the gate leakage dissipation. Analytical models from first principles to calculate the tunneling current and the propagation delay of behavioral level components is presented, which are backed by BSIM4/5 models and SPICE simulations. These components are characterized for 45 nm technology and an algorithm is provided for scheduling of datapath operations such that the overall tunneling current dissipation of a datapath circuit under design is minimal. It is observed that the oxide thickness that is being considered is very low it may not remain constant during the course of fabrication. Hence the algorithm takes process variation into consideration. Extensive experiments are conducted for various behavioral level benchmarks under various constraints and observed significant reductions, as high as 75.3% (with an average of 64.3%).
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2006
Creator: Velagapudi, Ramakrishna

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Date: August 2016
Creator: Bravo-Salgado, Angel D

Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Description: Epidemiologists engage in the study of the distribution and determinants of health-related states or events in human populations. Eventually, they will apply that study to prevent and control problems and contingencies associated with the health of the population. Due to the spread of new pathogens and the emergence of new bio-terrorism threats, it has become imperative to develop new and expand existing techniques to equip public health providers with robust tools to predict and control health-related crises. In this dissertation, I explore the effects caused in the disease dynamics by the differences in individuals’ physiology and social/behavioral characteristics. Multiple computational and mathematical models were developed to quantify the effect of those factors on spatial and temporal variations of the disease epidemics. I developed statistical methods to measure the effects caused in the outbreak dynamics by the incorporation of heterogeneous demographics and social interactions to the individuals of the population. Specifically, I studied the relationship between demographics and the physiological characteristics of an individual when preparing for an infectious disease epidemic.
Date: August 2014
Creator: Reyes Silveyra, Jorge A.

Modeling Infectious Disease Spread Using Global Stochastic Field Simulation

Description: Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical models for the study of infectious diseases in epidemiology. In order to model and simulate epidemics of an infectious disease, a global stochastic field simulation paradigm (GSFS) is proposed, which incorporates geographic and demographic based interactions. The interaction measure between regions is a function of population density and geographical distance, and has been extended to include demographic and migratory constraints. The progression of diseases using GSFS is analyzed, and similar behavior to the SIR model is exhibited by GSFS, using the geographic information systems (GIS) gravity model for interactions. The limitations of the SIR and similar models of homogeneous population with uniform mixing are addressed by the GSFS model. The GSFS model is oriented to heterogeneous population, and can incorporate interactions based on geography, demography, environment and migration patterns. The progression of diseases can be modeled at higher levels of fidelity using the GSFS model, and facilitates optimal deployment of public health resources for prevention, control and surveillance of infectious diseases.
Date: August 2006
Creator: Venkatachalam, Sangeeta

Modeling Synergistic Relationships Between Words and Images

Description: Texts and images provide alternative, yet orthogonal views of the same underlying cognitive concept. By uncovering synergistic, semantic relationships that exist between words and images, I am working to develop novel techniques that can help improve tasks in natural language processing, as well as effective models for text-to-image synthesis, image retrieval, and automatic image annotation. Specifically, in my dissertation, I will explore the interoperability of features between language and vision tasks. In the first part, I will show how it is possible to apply features generated using evidence gathered from text corpora to solve the image annotation problem in computer vision, without the use of any visual information. In the second part, I will address research in the reverse direction, and show how visual cues can be used to improve tasks in natural language processing. Importantly, I propose a novel metric to estimate the similarity of words by comparing the visual similarity of concepts invoked by these words, and show that it can be used further to advance the state-of-the-art methods that employ corpus-based and knowledge-based semantic similarity measures. Finally, I attempt to construct a joint semantic space connecting words with images, and synthesize an evaluation framework to quantify cross-modal semantic relationships that exist between arbitrary pairs of words and images. I study the effectiveness of unsupervised, corpus-based approaches to automatically derive the semantic relatedness between words and images, and perform empirical evaluations by measuring its correlation with human annotators.
Date: December 2012
Creator: Leong, Chee Wee

Models to Combat Email Spam Botnets and Unwanted Phone Calls

Description: With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based on call history. Finally, the accuracy of the proposed willingness estimator is validated with the actual call logs.
Date: May 2008
Creator: Husna, Husain

Monitoring Dengue Outbreaks Using Online Data

Description: Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Date: May 2014
Creator: Chartree, Jedsada