UNT Libraries - 52 Matching Results

Search Results

A Data Fusion Framework for Floodplain Analysis using GIS and Remotely Sensed Data

Description: Throughout history floods have been part of the human experience. They are recurring phenomena that form a necessary and enduring feature of all river basin and lowland coastal systems. In an average year, they benefit millions of people who depend on them. In the more developed countries, major floods can be the largest cause of economic losses from natural disasters, and are also a major cause of disaster-related deaths in the less developed countries. Flood disaster mitigation research was conducted to determine how remotely sensed data can effectively be used to produce accurate flood plain maps (FPMs), and to identify/quantify the sources of error associated with such data. Differences were analyzed between flood maps produced by an automated remote sensing analysis tailored to the available satellite remote sensing datasets (rFPM), the 100-year flooded areas "predicted" by the Flood Insurance Rate Maps, and FPMs based on DEM and hydrological data (aFPM). Landuse/landcover was also examined to determine its influence on rFPM errors. These errors were identified and the results were integrated in a GIS to minimize landuse / landcover effects. Two substantial flood events were analyzed. These events were selected because of their similar characteristics (i.e., the existence of FIRM or Q3 data; flood data which included flood peaks, rating curves, and flood profiles; and DEM and remote sensing imagery.) Automatic feature extraction was determined to be an important component for successful flood analysis. A process network, in conjunction with domain specific information, was used to map raw remotely sensed data onto a representation that is more compatible with a GIS data model. From a practical point of view, rFPM provides a way to automatically match existing data models to the type of remote sensing data available for each event under investigation. Overall, results showed how remote sensing could contribute to ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Necsoiu, Dorel Marius

Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index

Description: A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new ...
Date: August 2014
Creator: Goetz, Heinrich

Development of a Procedure to Evaluate Groundwater Quality and Potential Sources of Contamination in the East Texas Basin

Description: This study contributes a procedure, based on data analysis and geostatistical methods, to evaluate the distribution of chemical ratios and differentiate natural and anthropogenic contaminant sources of groundwater quality in the East Texas Basin. Four aquifers were studied, Sparta, Queen City, Carrizo and Wilcox. In this study, Carrizo- Wilcox is considered as one aquifer, and Sparta-Queen City as another. These aquifers were divided into depth categories, 0-150 feet for Sparta-Queen City and 300-600 feet and 600-900 feet for Carrizo-Wilcox in order to identify individual sources of contamination. Natural sources include aquifer mineral make up, salt domes and lignite beds. Major anthropogenic sources include lignite and salt dome mining and oil-gas production. Chemical ratios selected were Na/Cl, Ca/Cl, Mg/Cl, SO4/Cl, (Na+Cl)/TDS, SO4/Ca and (Ca+Mg)/(Na+K). Ratio distributions and their relationships were examined to evaluate physical-chemical processes occurring in the study area. Potential contaminant sources were used to divide the Basin into three areas: Area 1 to the east, Area 2 in the west and Area 3 in the center. Bivariate analysis was used to uncover differences between the areas. The waters in Area 1 are potentially impacted primarily from oil field waters. Sources present in Area 2 include lignite beds and oil field operations. Area 3 is the cap rock of salt domes that can contain gypsum and anhydrite. Based on the exploratory data analysis (Na+Cl)/TDS, (Ca+Mg)/(Na+K), and SO4/Ca ratios were chosen for geostatistical analysis. Chemical ratios that provided indications of cation exchange, salt domes and oil fields were (Na+Cl)/TDS, (Ca+Mg)/(Na+K) and SO4/Ca. In the Sparta-Queen City 150 zone the procedure did not provide a good method for differentiating between contaminant sources. However, the procedure was effective to indicate impacted ground water in the Carrizo-Wilcox 600 and 900 foot zones.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2001
Creator: Alderman, John H.

Development, Validation, and Evaluation of a Continuous, Real-time, Bivalve Biomonitoring System

Description: A biological monitoring tool to assess water quality using bivalve gape behavior was developed and demonstrated. The purpose of this work was to develop methodologies for screening water quality appropriate to the goals of the watershed paradigm. A model of bivalve gape behavior based on prediction of behavior using autoregressive techniques was the foundation of the bivalve biomonitoring system. Current technology was used in developing the system to provide bivalve gape state data in a continuous real-time manner. A laboratory version of the system, including data collection and analysis hardware and software, was developed for use as a toxicological assay for determination of effective concentrations of toxicant(s) or other types of stress on bivalve gape behavior. Corbicula fluminea was monitored and challenged with copper, zinc, and chlorpyrifos using the system. Effective concentrations of 176±23µg/L copper, 768±412µg/L zinc, and 68µg/L chlorpyrifos were observed using a natural water with high dissolved organic carbon concentrations. A rugged field version of the bivalve biomonitoring system was developed and deployed in two locations. The field systems were fitted with a photovoltaic array, a single board computer, and a CDPD telemetry modem for robust remote operation. Data were telemetered at a time relevant rate of once every ten minutes. One unit was deployed in Lake Lewisville, Denton County, TX in February 2000. Data were telemetered and archived at a 92% success rate. Bivalve gape data demonstrated significant behavioral deviations on average 5 times per month. A second unit was deployed in Pecan Creek, Denton, TX in June 2001. Data from this site were telemetered and archived at a 96% success rate. Over the months of June-August 2001, 16 significant behavioral deviations were observed, 63% of which were correlated with changes in physical/chemical parameters. This work demonstrated the relative sensitivity of bivalve gape as a toxicological endpoint ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Allen, H. Joel

Dynamics of Stream Fish Metacommunities in Response to Drought and Re-connectivity

Description: This dissertation investigates the spatio-temporal dynamics of intermittent stream fish metacommunities in response drought-induced fragmentation and re-connectivity using both field and experimental approaches. A detailed field study was conducted in two streams and included pre-drought, drought, and post-drought hydrological periods. Fish assemblages and metacommunity structure responded strongly to changes in hydrological conditions with dramatic declines in species richness and abundance during prolonged drought. Return of stream flows resulted in a trend toward recovery but ultimately assemblages failed to fully recover. Differential mortality, dispersal, recruitment among species indicates species specific responses to hydrologic fragmentation, connectivity, and habitat refugia. Two manipulative experiments tested the effects of drought conditions on realistic fish assemblages. Fishes responded strongly to drought conditions in which deeper pools acted as refugia, harboring greater numbers of fish. Variability in assemblage structure and movement patterns among stream pools indicated species specific habitat preferences in response predation, resource competition, and desiccation. Connecting stream flows mediated the impacts of drought conditions and metacommunity dynamics in both experiments. Results from field and experimental studies indicate that stream fish metacommunities are influenced by changes in hydrological conditions and that the timing, duration, and magnitude of drought-induced fragmentation and reconnecting stream flows have important consequences metacommunity dynamics.
Date: August 2015
Creator: Driver, Lucas J.

Ecological Enhancement of Timber Growth: Applying Compost to Loblolly Pine Plantations

Description: This study explored the application of compost onto a small loblolly pine tree forest in northeast Texas. Its purpose was to determine if the application of various amounts of compost would provide for accelerated rates of growth for the trees. Soil parameters were also monitored. A total of 270 trees were planted and studied in a northeast Texas forest ecosystem. Compost rates of 5, 25, and 50 tons per acre with either soil or compost backfill were utilized and compared to a control without compost. Nonparametric and parametric ANOVA and Chi-Square tests were utilized. The results indicated that greater application rates retained greater moisture and higher pH levels in the soil. Compost applications also yielded a greater survival rate as well as larger tree height and diameter when compared to the control. The 25 ton/acre application backfilled in native soil achieved the greatest average in height and diameter when compared to the averages for the control plot. Greater growth differences for the 25S application can be attributed to additional nutrients coupled with a stable pH consistent with native soil acidity.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 1999
Creator: Stuckey, Harold Troy

Ecotoxicological Investigations in Effluent-Dominated Stream Mesocosms

Description: The University of North Texas Stream Research Facility (UNTSRF) was designed to examine contaminant impacts on effluent-dominated stream ecosystems. Stream mesocosms, fed municipal effluent from the City of Denton, TX, Pecan Creek Water Reclamation Plant (PCWRP), were treated with 0, 15 or 140 µg/L cadmium for a 10-day study in August 2000. Laboratory toxicity test and stream macroinvertebrate responses indicated that cadmium bioavailability was reduced by constituents of effluent-dominated streams. The Biotic Ligand Model (BLM) for Cd was used to predict a 48 hour Cd EC50 for Ceriodaphnia dubia of 280 µg/L in these effluent-dominated streams. This value is higher that an EC50 of 38.3 µg/L Cd and a 7-day reproduction effect level of 3.3 µg/L Cd generated for C. dubia in reconstituted laboratory hard water. These results support use of a cadmium BLM for establishing site-specific acute water quality criteria in effluent-dominated streams. Although not affected by 15 µg/L treatments, organisms accumulated Cd in 15 µg/L treated streams. Hence, over longer exposure periods, Cd accumulation may increase and a no effect level may be lower than the observed 10-day no effect level of 15 µg/L. A toxicity identification evaluation procedure was utilized with in vitro and in vivo bioassays to identify estrogenic compounds in PCWRP effluent, previously identified to seasonally induce vitellogenin (VTG) in male fathead minnows. Steroids, nonylphenol ethoxylate metabolites, and other unidentified compounds were identified as causative effluent estrogens. These findings suggest that in vivo VTG bioassays should be used to confirm in vitro Yeast Estrogen Screening assay activity when effluents are fractionated or screened for estrogenicity. A subsequent 90-day cadmium study was initiated to assess long-term effluent and cadmium effects on fish endocrine function. Juvenile fathead minnows were placed in UNTSRF pool sections of replicate streams treated with 0, 5, 20 or 80 µg/L Cd. Male ...
Date: December 2002
Creator: Brooks, Bryan W.

Effect of Rancher’s Management Philosophy, Grazing Practices, and Personal Characteristics on Sustainability Indices for North Central Texas Rangeland

Description: To assess sustainability of privately owned rangeland, a questionnaire was used to gathered data from ranches in Cooke, Montague, Clay, Wise, Parker, and Jack counties in North Central Texas. Information evaluated included: management philosophy, economics, grazing practices, environmental condition, quality of life, and demographics. Sustainability indices were created based on economic and land health indicator variables meeting a minimum Cronbach‘s alpha coefficient (α = 0.7). Hierarchical regression analysis was used to create models explaining variance in respondents’ indices scores. Five predictors explained 36% of the variance in rangeland economic sustainability index when respondents: 1) recognized management inaction has opportunity costs affecting economic viability; 2) considered forbs a valuable source of forage for wildlife or livestock; 3) believed governmental assistance with brush control was beneficial; 4) were not absentee landowners and did not live in an urban area in Texas, and; 5) valued profit, productivity, tax issues, family issues, neighbor issues or weather issues above that of land health. Additionally, a model identified 5 predictors which explained 30% of the variance for respondents with index scores aligning with greater land health sustainability. Predictors indicated: 1) fencing cost was not an obstacle for increasing livestock distribution; 2) land rest was a component of grazing plans; 3) the Natural Resource Conservation Service was used for management information; 4) fewer acres were covered by dense brush or woodlands, and; 5) management decisions were not influenced by friends. Finally, attempts to create an index and regression analysis explaining social sustainability was abandoned, due to the likely-hood of type one errors. These findings provide a new line of evidence in assessing rangeland sustainability, supporting scientific literature concerning rangeland sustainability based on ranch level indicators. Compared to measuring parameters on small plots, the use of indices allows for studying replicated whole- ranch units using rancher insight. Use ...
Date: December 2011
Creator: Becker, Wayne

Effects on Survival, Reproduction and Growth of Ceriodaphnia dubia following Single Episodic Exposure to Copper or Cadmium

Description: Effects of episodic exposures have gained attention as the regulatory focus of the Clean Water Act has shifted away from continuous-flow effluents. Standardized laboratory toxicity tests require that exposure be held constant. However, this approach may not accurately predict organism responses in the field following episodic exposures such as those associated with rain-driven runoff events or accidental pollutant discharge. Using a modified version of the 7-day short-term chronic test recommended by the US Environmental Protection Agency, Ceriodaphnia dubia were exposed to copper or cadmium for durations ranging from 1 minute to 24 hours. In addition, adult reproductive recovery and effects on second generation individuals was assessed following select copper exposures. Finally, cadmium exposures were compared in reconstituted hard water (RHW) and municipal treated wastewater effluent (TWE). Following exposure, organisms were transferred to clean RHW or TWE and maintained for the remainder of the test. No- and lowest observed effect concentrations (NO- and LOECs) increased logarithmically with respect to logarithmic decreases in duration regardless of metal, endpoint or water type. Effective concentrations of cadmium however, were usually higher than those of copper, especially in TWE. LOECs for C. dubia survival following 24-hour and 5-minute exposures to copper were 116 and 417 µg/L, respectively. LOECs for fecundity were 58 and 374 µg/L, respectively. Neonate production of first generation adult C. dubia appeared to recover from pulsed copper exposure upon examination of individual broods. Cumulative mean neonate production however, showed almost no signs of recovery at exposure durations ≥3 hours. Pulse exposure to copper also resulted in diminished fecundity of unexposed second generation individuals. Such effects were pronounced following parental exposure for 24 hours but lacking after parental exposures ≤3 hours. LOECs for C. dubia survival following 24-hour and 5-minute exposures to cadmium in RHW were 44 and 9000 µg/L, respectively. LOECs for ...
Date: August 2005
Creator: Turner, Philip K.

Evaluation of the Developmental Effects and Bioaccumulation Potential of Triclosan and Triclocarban Using the South African Clawed Frog, Xenopus Laevis

Description: Triclosan (TCS) and triclocarban (TCC) are antimicrobials found in U.S. surface waters. This dissertation assessed the effects of TCS and TCC on early development and investigated their potential to bioaccumulate using Xenopus laevis as a model. The effects of TCS on metamorphosis were also investigated. For 0-week tadpoles, LC50 values for TCS and TCC were 0.87 mg/L and 4.22 mg/L, respectively, and both compounds caused a significant stunting of growth. For 4-week tadpoles, the LC50 values for TCS and TCC were 0.22 mg/L and 0.066 mg/L; and for 8-week tadpoles, the LC50 values were 0.46 mg/L and 0.13 mg/L. Both compounds accumulated in Xenopus. For TCS, wet weight bioaccumulation factors (BAFs) for 0-, 4- and 8-week old tadpoles were 23.6x, 1350x and 143x, respectively. Lipid weight BAFs were 83.5x, 19792x and 8548x. For TCC, wet weight BAFs for 0-, 4- and 8-week old tadpoles were 23.4x, 1156x and 1310x. Lipid weight BAFs were 101x, 8639x and 20942x. For the time-to-metamorphosis study, TCS showed an increase in weight and snout-vent length in all treatments. Exposed tadpoles metamorphosed approximately 10 days sooner than control tadpoles. For the hind limb study, although there was no difference in weight, snout-vent length, or hind limb length, the highest treatment was more developed compared to the control. There were no differences in tail resorption rates between the treatments and controls. At relevant concentrations, neither TCS nor TCC were lethal to Xenopus prior to metamorphosis. Exposure to relatively high doses of both compounds resulted in stunted growth, which would most likely not be evident at lower concentrations. TCS and TCC accumulated in Xenopus, indicating that the compound has the potential to bioaccumulate through trophic levels. Although TCS may increase the rate of metamorphosis in terms of developmental stage, it did not disrupt thyroid function and metamorphosis in ...
Date: December 2010
Creator: King, Marie Kumsher

Evaluation of the Economic, Social, and Biological Feasibility of Bioconverting Food Wastes with the Black Soldier Fly (Hermetia illucens)

Description: Food waste in the waste stream is becoming an important aspect of integrated waste management systems. Current efforts are composting and animal feeding. However, these food waste disposal practices rely on slow thermodynamic processes of composting or finding farmers with domestic animals capable of consuming the food wastes. Bioconversion, a potential alternative, is a waste management practice that converts food waste to insect larval biomass and organic residue. This project uses a native and common non-pest insect in Texas, the black soldier fly, which processes large quantities of food wastes, as well as animal wastes and sewage in its larval stage. The goal of this research is to facilitate the identification and development of the practical parameters of bioconversion methods at a large cafeteria. Three major factors were selected to evaluate the practicality of a bioconversion system: (1) the biological constraints on the species; (2) the economic costs and benefits for the local community; (3) the perception of and interaction between the public and management agencies with respect to the bioconversion process. Results indicate that bioconversion is feasible on all levels. Larvae tolerate and consume food waste as well as used cooking grease, reducing the overall waste volume by 30-70% in a series of experiments, with an average reduction of 50%. The economical benefits are reduced collection costs and profit from the sale of pupae as a feedstuff, which could amount to as much as $1,200 per month under optimal conditions. Social acceptance is possible, but requires education of the public, specifically targeting school children. Potential impediments to social acceptance include historical attitudes and ignorance, which could be overcome through effective educational efforts.
Date: August 2004
Creator: Barry, Tami

Geology as a Georegional Influence on Quercus Fagaceae Distribution in Denton and Coke Counties of Central and North Central Texas and Choctaw County of Southeastern Oklahoma, Using GIS as an Analytical Tool.

Description: This study elucidates the underlying relationships for the distribution of oak landcover on bedrock and soil orders in two counties in Texas and one in Oklahoma. ESRI's ArcGis and ArcMap was used to create surface maps for Denton and Coke Counties, Texas and Choctaw County, Oklahoma. Attribute tables generated in GIS were exported into a spreadsheet software program and frequency tables were created for every formation and soil order in the tri-county research area. The results were both a visual and numeric distribution of oaks in the transition area between the eastern hardwood forests and the Great Plains. Oak distributions are changing on this transition area of the South Central Plains. The sandy Woodbine and Antlers formations traditionally associated with the largest oak distribution are carrying oak coverage of approximately 31-32% in Choctaw and Denton Counties. The calcareous Blackland and Grand Prairies are traditionally associated with treeless grasslands, but are now carrying oak and other tree landcover up to 18.9%. Human intervention, including the establishment of artificial, political and social boundaries, urbanization, farming and fire control have altered the natural distribution of oaks and other landcover of this unique georegion.
Date: December 2007
Creator: Maxey, George F.

A geospatial tool for assessing potential wildland fire risk in central Texas.

Description: Wildland fires in the United States are not always confined to wilderness areas. The growth of population centers and housing developments in wilderness areas has blurred the boundaries between rural and urban. This merger of human development and natural landscape is known in the wildland fire community as the wildland urban interface or WUI, and it is within this interface that many wildland fires increasingly occur. As wildland fire intrusions in the WUI increase so too does the need for tools to assess potential impact to valuable assets contained within the interface. This study presents a methodology that combines real-time weather data, a wildland fire behavior model, satellite remote sensing and geospatial data in a geographic information system to assess potential risk to human developments and natural resources within the Austin metropolitan area and surrounding ten counties of central, Texas. The methodology uses readily available digital databases and satellite images within Texas, in combination with an industry standard fire behavior model to assist emergency and natural resource managers assess potential impacts from wildland fire. Results of the study will promote prevention of WUI fire disasters, facilitate watershed and habitat protection, and help direct efforts in post wildland fire mitigation and restoration.
Date: August 2005
Creator: Hunter, Bruce Allan

Habitat Fragmentation by Land-Use Change: One-Horned Rhinoceros in Nepal and Red-Cockaded Woodpecker in Texas

Description: This research focuses on the spatial analysis of the habitat of two vulnerable species, the one-horn rhinoceros in the grasslands of southern Nepal, and the red-cockaded woodpecker in the Piney woods of southeast Texas, in the USA. A study sites relevant for biodiversity conservation was selected in each country: Chitwan National Park in Nepal, and areas near the Big Thicket National Preserve in Texas. Land-use differs in the two study areas: the first is still undergoing agrarian development while the second is in a technological phase and undergoing urbanization processes. Satellite remote sensing images were used to derive land-cover maps by supervised classification. These maps were then processed by Geographic Information Systems methods to apply habitat models based on basic resources (food and cover) and obtain habitat suitability maps. Several landscape metrics were computed to quantify the habitat characteristics especially the composition and configuration of suitable habitat patches. Sensitivity analyses were performed as the nominal values of some of the model parameters were arbitrary. Development potential probability models were used to hypothesize changes in land-use of the second study site. Various scenarios were employed to examine the impact of development on the habitat of red-cockaded woodpecker. The method derived in this study would prove beneficial to guide management and conservation of wildlife habitats.
Date: December 2010
Creator: Thapa, Vivek

Influence of Sediment Exposure and Water Depth on Torpedograss Invasion of Lake Okeechobee, Florida

Description: Torpedograss (Panicum repens) was first observed in Lake Okeechobee in the 1970s and appears to have displaced an estimated 6,400 ha of native plants, such as spikerush (Eleocharis cellulosa), where inundation depths are often less than 50 cm. Two series of studies evaluated substrate exposure and water depth influences on torpedograss establishment and competitiveness. Results revealed that fragments remain buoyant for extended periods and so facilitate dispersal. Once anchored to exposed substrate fragments can readily root and establish. Subsequently, torpedograss thrives when subjected to inundations to 75 cm and survives prolonged exposure to depths greater than 1 m. These findings suggest that fluctuating water levels contribute to torpedograss dispersal and colonization patterns and that low water levels increase marsh area susceptible to invasion. The competition study found that spikerush grown in monoculture produces significantly more biomass when continually inundated to shallow depths (10 to 20 cm) than when subjected to drier conditions (-25 cm) or greater inundations (80 cm). In contrast, torpedograss establishes more readily on exposed substrate (-25 to 0 cm) compared to inundate substrates. During the first growing season biomass production increases as substrate exposure interval increases. However, during the second year, established torpedograss produces more biomass when grown on intermittently wet (0 cm) compared to permanently dry (-25 cm) or intermittently inundated (10 cm) substrates. No difference in production was observed between substrates permanently inundated (10 cm) and any other regime tested. During the first two years of torpedograss invasion, regardless of treatment, spikerush suppresses invasion and torpedograss had little effect on established spikerush, indicating that spikerush-dominated areas are capable of resisting torpedograss invasion. Even so, disturbances that might cause mortality of long hydroperiod species, such as spikerush, may create open gaps in the native vegetation and thus facilitate torpedograss establishment and expansion.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Smith, Dian H.

The Influence of Urban Green Spaces on Declining Bumble Bees (Hymenoptera: Apidae)

Description: Bumble bees (Bombus spp.) are adept pollinators of countless cultivated and wild flowering plants, but many species have experienced declines in recent decades. Though urban sprawl has been implicated as a driving force of such losses, urban green spaces hold the potential to serve as habitat islands for bumble bees. As human populations continue to grow and metropolitan areas become larger, the survival of many bumble bee species will hinge on the identification and implementation of appropriate conservation measures at regional and finer scales. North Texas is home to some the fastest-growing urban areas in the country, including Denton County, as well as at least two declining bumble bee species (B. pensylvanicus and B. fraternus). Using a combination of field , molevular DNA and GIS methods I evaluated the persistence of historic bumble bee species in Denton County, and investigated the genetic structure and connectivity of the populations in these spaces. Field sampling resulted in the discovery of both B. pensylvanicus and B. fraternus in Denton County's urban green spaces. While the relative abundance of B. fraternus in these spaces was significantly lower than historic levels gleaned from museum recors, that of B. pensylvanicus was significantly higher. Statistical analyses found that both bare ground and tree cover surrounding sample sites were negatively associated with numbers of bumble bee individuals and hives detected in these green spaces. Additionally, limited genetic structuring of bumble bee populations was detected, leading to the conclusion that extensive gene flow is occurring across populations in Denton County.
Date: May 2016
Creator: Beckham, Jessica Lorene

Informing Conservation Management Using Genetic Approaches: Greater Sage-grouse and Galápagos Short-eared Owls as Case Studies

Description: Small isolated populations are of particular conservation interest due to their increased extinction risk. This dissertation investigates two small wild bird populations using genetic approaches to inform their conservation. Specifically, one case study investigated a Greater Sage-grouse (Centrocercus urophasianus) population located in northwest Wyoming near Jackson Hole and Grand Teton National Park. Microsatellite data showed that the Jackson sage-grouse population possessed significantly reduced levels of neutral genetic diversity and was isolated from other Wyoming populations. Analysis with single nucleotide polymorphisms (SNPs) and microsatellite data provided further evidence that the population's timing of isolation was relatively recent and most likely due to recent anthropogenic habitat changes. Conservation recommendations include maintaining or increasing the population's current size and reestablishing gene flow with the nearest large population. The second case study investigated the genetic distinctiveness of the Floreana island population of the Galápagos Short-eared Owl (Asio flammeus galapagoensis). Mitochondrial DNA sequence data did not detect differences across nine island populations, yet microsatellite and morphometric data indicated that limited gene flow existed with the population and surrounding island populations, which appeared asymmetric in direction from Floreana to Santa Cruz with no indication of gene flow into Floreana. These results have important conservation implications and recommend that the Floreana Short-eared Owl population be held in captivity during the rodenticide application planned for an ecosystem restoration project in 2018. The population is less likely to receive immigrants from surrounding island populations if negatively effected by feeding on poisoned rodents.
Date: May 2016
Creator: Schulwitz, Sarah E

Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment

Description: The objective of this research was to investigate lead speciation in the soil/sediment-water environment and to better understand how the species affect lead mobility under different environmental conditions. The research involved both field soil and sediment samples as well as standard lead solutions. Field samples were fully characterized and extracted by aqueous and organic solvents. The results were compared and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization and organic complexation studies were conducted with standard lead solutions under controlled experimental conditions. Results of the field samples showed that pH, dissolved cations, ionic strength, dissolved organic matter, and nature of the soil/sediment matrix play major roles in the distribution and mobility of lead (Pb) from contaminated sites. In the aqueous equilibration experiment, the magnitude of Pb2+ solubilization was in the order of pH4>pH7>pH9. The results were in good agreement with MINTEQA2 predictions. An important finding of the research is the detection of Pb polymerization species under controlled experimental conditions. At pH 5.22, Pb polymeric species were formed at rate of 0.03 per day. The role of Pb complexation with organic matter was evaluated in both field and standard samples. Different methodologies showed three types of organically bound Pb. A very small fraction of Pb, in the ppb range, was extractable from the contaminated soil by polar organic solvents. Sequential extractions show that 16.6±1.4 % of the Pb is organically complexed. Complexation of Pb with fulvic acid provided new information on the extent of Pb association with soluble organic matter. The overall results of this research have provided new and useful information regarding Pb speciation in environmental samples. The results, in several instances, have provided verification of MINTEQA2 model's prediction. They also revealed areas of disagreement between the models prediction and the experimental results. A positive note regarding the experimental ...
Date: December 2002
Creator: Sanmanee, Natdhera

Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy

Description: The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
Date: December 2011
Creator: Jerez, Carlos J.

Modeling of Land Use Change Effects on Storm Water Quantity and Quality in the City of Carrollton and the North Texas Area

Description: Development and population are rapidly increasing in urbanizing areas of North Texas and so is the need to understand changes in storm water runoff flow and its contamination by nutrients, sediment, pesticides and other toxicants. This study contributes to this understanding and has two primary components: first, development of a graphical user interface for a geographic information system and storm water management database, and second, performing a two-scale hydrological modeling approach (the US Corp of Engineers HEC-HMS model and the US Environmental Protection Agency SWMM model). Both primary components are used together as a toolkit to support the storm water management program of the City of Carrollton, located in North Texas. By focusing limited city resources, the toolkit helps storm water managers in the process of compliance with federal regulations, especially the National Pollution Discharge Elimination System permit, and provides guidance for reporting, planning and investigation. A planning example was conducted by modeling potential changes in storm water quality due to projections of land use based on the City of Carrollton's Comprehensive Plan. An additional component of this study is the evaluation of future changes in surface water quantity and quality in the North Central Texas area, specifically in a rural but rapidly urbanizing subbasin area of the greater Lake Lewisville watershed. This was accomplished using the US Corp of Engineers HEC-HMS hydrological model. Precipitation scenarios were derived from years of historically high, medium, and low annual precipitation. Development scenarios were derived from current land use in the Lake Lewisville sub basin, current land use in the city of Carrollton, and from Markov projections based on recent land use change calculated from satellite images of 1988 and 1999. This information is useful for future land use planning and management of water resources in North Texas.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Duncan, Phillip Brent

Modeling the Effects of Chronic Toxicity of Pharmaceutical Chemicals on the Life History Strategies of Ceriodaphnia Dubia: a Multigenerational Study

Description: Trace quantities of pharmaceuticals (including carbamazepine and sertraline) are continuously discharged into the environment, which causes concern among scientists and regulators regarding their potential long-term impacts on aquatic ecosystems. These compounds and their metabolites are continuously interacting with the orgranisms in various life stages, and may differentially influence development of embryo, larvae, juvenile, and adult stages. To fully understand the potential ecological risks of two candidate pharmaceutical chemicals (carbamazepine (CBZ) and sertraline (SERT)) exposure on survival, growth and reproduction of Ceriodaphnia dubia in three sucessive generations under static renewal toxicity test, a multigenerational approach was taken. Results indicate that SERT exposure showed higher sensitivity to chronic exposure to C. dubia growth and reproduction than CBZ exposure. The lowest concentration to affect fecundity and growth was at 50 µg L-1 SERT in the first two generations. These parameters become more sensitive during the third generation where the LOEC was 4.8 µg L-1. The effective concentrations (EC50) for the number of offspring per female, offspring body size, and dry weight were 17.2, 21.2, and 26.2 µg SERT L-1, respectively. Endpoints measured in this study demonstrate that chronic exposure of C. dubia to SERT leads to effects that occur at concentrations an order of magnitude higher than predicted environmental concentrations indicating potential transgenerationals effects. Additionally, a process-based dynamic energy budget (DEB) model is implemented to predict the simulated effects of chronic toxicity of SERT and CBZ to C. dubia individual behavior at laboratory condition. The model‘s output indicates the ecotoxicological mode of action of SERT exposure, which acts on feeding or assimilation with an effect that rapidly saturates at higher concentrations. Offspring size decreases with the toxic effects on feeding, and offspring number is thus less affected than total investment in reproduction. Consequently, CBZ affects direclty in reproduction which are captured by DEBtox ...
Date: December 2013
Creator: Lamichhane, Kiran

On-Road Remote Sensing of Motor Vehicle Emissions: Associations between Exhaust Pollutant Levels and Vehicle Parameters for Arizona, California, Colorado, Illinois, Texas, and Utah

Description: On-road remote sensing has the ability to operate in real-time, and under real world conditions, making it an ideal candidate for detecting gross polluters on major freeways and thoroughfares. In this study, remote sensing was employed to detect carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxide (NO). On-road remote sensing data taken from measurements performed in six states, (Arizona, California, Colorado, Illinois, Texas, and Utah) were cleaned and analyzed. Data mining and exploration were first undertaken in order to search for relationships among variables such as make, year, engine type, vehicle weight, and location. Descriptive statistics were obtained for the three pollutants of interest. The data were found to have non-normal distributions. Applied transformations were ineffective, and nonparametric tests were applied. Due to the extremely large sample size of the dataset (508,617 records), nonparametric tests resulted in "p" values that demonstrated "significance." The general linear model was selected due to its ability to handle data with non-normal distributions. The general linear model was run on each pollutant with output producing descriptive statistics, profile plots, between-subjects effects, and estimated marginal means. Due to insufficient data within certain cells, results were not obtained for gross vehicle weight and engine type. The "year" variable was not directly analyzed in the GLM because "year" was employed in a weighted least squares transformation. "Year" was found to be a source of heteroscedasticity; and therefore, the basis of a least-squares transformation. Grouped-years were analyzed using medians, and the results were displayed graphically. Based on the GLM results and descriptives, Japanese vehicles typically had the lowest CO, HC, and NO emissions, while American vehicles ranked high for the three. Illinois, ranked lowest for CO, while Texas ranked highest. Illinois and Colorado were lowest for HC emissions, while Utah and California were highest. For NO, Colorado ranked highest ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2003
Creator: Dohanich, Francis Albert

Optimizing Scientific and Social Attributes of Pharmaceutical Take Back Programs to Improve Public and Environmental Health

Description: Research continues to show that pharmaceutical environmental contamination has caused adverse environmental effects, with one of the most studied effects being feminization of fish exposed to pharmaceutical endocrine disruptors. Additionally, there are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a remedy to these concerns; however a thorough review of peer-reviewed literature and publicly available information on these programs indicates limited research has been conducted to validate these programs as a purported solution. Furthermore, there are significant data gaps on key factors relating to take back program participants. The purpose of this dissertation was therefore to address these gaps in knowledge and ultimately determine if take back programs could actually improve public and environmental health. This was accomplished by conducting social and scientific research on a take back program called Denton Drug Disposal Day (D4). Socioeconomic, demographic, and geographic characteristics of D4 participants were investigated using surveys and geographic analysis. Impacts on public health were determined by comparing medications collected at D4 events with medications reported to the North Texas Poison Center as causing adverse drug exposures in Denton County. Impacts to environmental health were determined by monitoring hydrocodone concentrations in wastewater effluent released from Denton’s wastewater treatment plant before and after D4 events. Data collected and analyzed from the D4 events and the wastewater monitoring suggests D4 events were successful in contributing to improvements in public and environmental health; however there was insufficient evidence to prove that D4 events were exclusively responsible for these improvements. An additional interesting finding was that willingness to travel to participate in D4 events was limited to a five to six mile threshold. This geographic information, combined with other findings related to socioeconomic, ...
Date: August 2012
Creator: Stoddard, Kati Ireland

Organic carbon dynamics of the Neches River and its floodplain.

Description: A large river system typically derives the majority of its biomass from production within the floodplain. The Neches River in the Big Thicket National Preserve is a large blackwater river that has an extensive forested floodplain. Organic carbon was analyzed within the floodplain waters and the river (upstream and downstream of the floodplain) to determine the amount of organic carbon from the floodplain that is contributing to the nutrient dynamics in the river. Dissolved organic carbon was significantly higher at downstream river locations during high discharge. Higher organic carbon levels in the floodplain contributed to increases in organic carbon within the Neches River downstream of the floodplain when Neches River discharges exceeded 10,000 cfs. Hurricane Rita passed through the Big Thicket National Preserve in September 2005. Dissolved organic carbon concentrations recorded after Hurricane Rita in the Neches River downstream of the floodplain were significantly higher than upstream of the floodplain. Dissolved organic carbon was twice as high after the hurricane than levels prior to the hurricane, with floodplain concentrations exceeding 50 ppm C. The increase in organic carbon was likely due to nutrients leached from leaves, which were swept from the floodplain trees prior to normal abscission in the fall. A continuum of leaf breakdown rates was observed in three common floodplain species of trees: Sapium sebiferum, Acer rubrum, and Quercus laurifolia. Leaves collected from blowdown as a result of Hurricane Rita did not break down significantly faster than leaves collected prior to abscission in the fall. Processing coefficients for leaf breakdown in a continuously wet area of the floodplain were significantly higher than processing coefficients for leaf breakdown on the floodplain floor. The forested floodplain of the Neches River is the main contributor of organic carbon. When flow is greater than 10,000 csf, the floodplain transports organic carbon directly ...
Date: December 2007
Creator: Stamatis, Allison Davis