UNT Libraries - 54 Matching Results

Search Results

Genetic Characterization of Central and South American Populations of Scarlet Macaw (Ara macao)
The wild populations of the Scarlet Macaw subspecies native to southern Mexico and Central America, A. m. cyanoptera, have been drastically reduced over the last half century and are now a major concern to local governments and conservation groups. Programs to rebuild these local populations using captive bred specimens must be careful to reintroduce the native A. m. cyanoptera, as opposed to the South American nominate subspecies (A. m. macao) or hybrids of the two subspecies. Molecular markers for comparative genomic analyses are needed for definitive differentiation. Here I describe the isolation and sequence analysis of multiple loci from 7 pedigreed A. m. macao and 14 pedigreed A. m. cyanoptera specimens. The loci analyzed include the 18S rDNA genes, the complete mitogenome as well as intronic regions of selected autosomally-encoded genes. Although the multicopy18S gene sequences exhibited 10% polymorphism within all A. macao genomes, no differences were observed between any of the 21 birds whose genomes were studied. In contrast, numerous polymorphic sites were observed throughout the 16,993 bp mitochondrial genomes of both subspecies. Although much of the polymorphism was observed in the genomes of both subspecies, subspecies-specific alleles were observed at a number of mitochondrial loci, including 12S, 16S, CO2 and ND3. Evidence of possible subspecies-specific alleles were also found in three of four screened nuclear loci. Collectively, these mitochondrial and nuclear loci can be used as the basis to distinguish A. m. cyanoptera from the nominate subspecies, A. m. macao, as well as identify many hybrids, and most importantly will contribute to further reintroduction efforts.
Zebrafish Von Willebrand Factor
In humans, von Willebrand factor (vWF) is a key component in hemostasis and acts as a 'cellular adhesive' by letting the circulating platelets bind to exposed subendothelium. It also acts as a carrier and stabilizer of factor VIII (FVIII). A dysfunction or reduction of vWF leads to von Willebrand disease (vWD), resulting in bleeding phenotype which affects 1% of the population. Currently there are a variety of animal models used for the study of vWF and vWD; however, they do not possess the advantages found in zebrafish. Therefore, we set out to establish zebrafish as a model for the investigation of vWF and vWD through the use of bioinformatics and various molecular techniques. Using bioinformatics we found that the vWF gene is located on chromosome 18, that the GPIb? protein sequence is conserved. Confirmation of vWF production was shown by means of immunostaining and by RT-PCR, in thrombocytes as well as in veins and arteries. Evidence of vWF involvement in hemostasis and thrombosis was shown using MO and VMO technology to produce a vWD like phenotype, resulting in an increase in TTO and TTA, as well as a reduction in FVIII when blood was tested using the kPTT assay, coinciding with a decrease in vWF. Stimate treatment provided opposite results of MO and VMO, showing a decrease in TTO and TTA. Investigation of the role of microparticles in hemostasis and their interaction with vWF resulted in a conclusion that the GPIb? receptor should exist on MPs and that it may interact not only with zebrafish vWF but also with human UL-vWF. Agglutination of MPs in the presence of UL-vWF but in the absence of ristocetin and plasma, treatment with ADAMTS-13 abolishing the interaction between MPs and UL-vWF provided evidence that vWF interacts with MPs probably with the GPIb?. We also ...
Structural Analysis of the TOL pDK1 xylGFJQK Region and Partial Characterization of the xylF and xylG Gene Products
TOL plasmids encode enzymes responsible for utilization of toluene and related aromatic compounds by Pseudomonas putida, ultimately converting them to central metabolic intermediates. The nucleotide sequence for the 5.6 kb xylGFJQK region of the pDK1 TOL meta operon was determined. DNA sequence analysis revealed the presence of five open reading frames corresponding to xylG (1458 bp), xylF (846 bp), xylJ (783 bp), xylQ (936 bp) and xylK (1047 bp), encoding predicted protein products of 51.6, 31.3, 27.8, 32.8, and 36.6 kDa in size, respectively. The average G+C content of the xylLTEGFJQK region was 65.7%, somewhat higher than the 58.9% seen in the immediately upstream xylXYZ region and substantially more than the 50% G+C content reported for the upper TOL operon of this plasmid. Homology comparisons were made with genes and proteins of related catabolic plasmids. The dmpCDEFG and pWWO xylGFJQK regions exhibit consistently high levels of nucleotide and amino acid homology to pDK1 xylGFJQK throughout the entire region. In contrast, although the nucleotide sequence homology of the Acinetobacter atdCDE region to xylGFJ is high, the homology of atdFG to xylQK is markedly less. Such radical changes in homology between corresponding regions of different operons, combined with variable base and codon usage patterns within and between operons, provides additional support for the idea that the upper and lower operons encoding enzymes of aromatic pathways have evolved independently of one another and that these operons have continued to exchange genetic material with homologous expression units through a series of recombination events. Recombinant plasmids were constructed for individual expression of each of the xylGFJQK genes. HMSD (XylG) and HMSH (XylF) were partially purified and characterized with respect to substrate specificity and kinetic mechanism. Evidence was obtained suggesting that the HMSD reaction occurs via a steady state ordered mechanism or a random mechanism where ...
Mutation Rate Analysis of the Human Mitochondrial D-loop and its Implications for Forensic Identity Testing
To further facilitate mitochondrial DNA (mtDNA) sequence analysis for human identity testing, a better understanding of its mutation rate is needed. Prior to the middle 1990's the mutation rate applied to a forensic or evolutionary analysis was determined by phylogenetic means, This method involved calculating genetic distances as determined by amino acid or DNA sequence variability within or between species. The mutation rate as determined by this method ranged from 0.025-0.26 nucleotide substitutions/ site/ myr (million years). With the recent advent of mtDNA analysis as a tool in human identity testing an increased number of observations have recently come to light calling into question the mutation rate derived from the phylogenetic method. The mutation rate as observed from forensic analysis appears to be much higher than that calculated phylogenetically. This is an area that needs to be resolved in human identity testing. Mutations that occur within a maternal lineage can lead to a possible false exclusion of an individual as belonging to that lineage. A greater understanding of the actual rate of mutation within a given maternal lineage can assist in determining criteria for including or excluding individuals as belonging to that lineage. The method used to assess the mutation rate in this study was to compare mtDNA sequences derived from the HVI and HVII regions of the D-loop from several different maternal lineages. The sequence information was derived from five unrelated families consisting of thirty-five individuals. One intergenerational mutational event was found. This derives to approximately 1.9 nucleotide substitutions/ site/ myr. This mutation rate was very consistent with several other similar studies. This increased mutation rate needs to be considered by forensic testing laboratories performing mtDNA sequence analysis prior to formulating any conclusive results.
Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans
Ischemic events of even a very short duration are not tolerated Ill in humans. The human cost of ischemia, when looked at as combined cardiovascular disease, dwarfs all other causes of death in the United States. Annually, CVD kills as many people in the US as does cancer, chronic lower respiratory disease, accidents, and diabetes mellitus combined. In 2005 (the latest year for which final statistics are available), CVD was responsible for 864,480 deaths or 35.3 percent of total deaths for the year. In my study, I have used the nematode Caenorhabditis elegans to determine genetic and environmental modulators of oxygen deprivation a key component of ischemia. I have found that animals with mutations in insulin like signaling pathways, neuronal function, electron transport chain components, germline function, and animals that are preconditioned by being raised on a diet of E. coli HT115 bacteria at 25°C have an enhanced ability to survive long-term (>72 hours) anoxia (<.005 kPa O2) at 20°C. The enhanced anoxia survival phenotype partially correlates with increased levels of carbohydrate stores in the nematodes. Suppression of this enhanced anoxia survival phenotype is possible by altering expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, the FOXO transcription factor DAF-16, and 5’-AMP kinase.
A regulatory role for N-acylethanolamine metabolism in Arabidopsis thaliana seeds and seedlings.
N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. Because NAE levels in seeds decline during imbibition similar to ABA, a physiological role was predicted for these metabolites in Arabidopsis thaliana seed germination and seedling development. There is also a corresponding increase of AtFAAH (fatty acid amide hydrolase), transcript levels and activity, which metabolizes NAE to ethanolamine and free fatty acids. Based on whole genome microarray studies it was determined that a number of up-regulated genes that were responsive to NAE were also ABA responsive. NAE induced gene expression in these ABA responsive genes without elevating endogenous levels of ABA. It was also determined that many of these NAE/ABA responsive genes were associated with an ABA induced secondary growth arrest, including ABI3. ABI3 is a transcription factor that regulates the transition from embryo to seedling growth, the analysis of transcript levels in NAE treated seedlings revealed a dose dependent, inverse relationship between ABI3 transcript levels and growth, high ABI3 transcript levels were associated with growth inhibition. Similar to ABA, NAE negatively regulated seedling growth within a narrow window of early seedling establishment. When seedlings are exposed to NAE or ABA within the window of sensitivity, the induction of genes normally associated with the ungerminated desiccation tolerant state resumed. The NAE tolerant FAAH overexpressor and the NAE sensitive FAAH knockout both had a NAE/ABA sensitive window similar to the wild type A. thaliana. The abi3-1 ABA insensitive mutant does not undergo growth arrest upon exposure to ABA, but NAE did induce growth arrest when treated within the sensitivity window. This evidence showed that although NAE functions within an ABA dependent pathway, it also functions in an ABA independent signaling pathway. The FAAH overexpressor is tolerant to NAE through its ability to quickly metabolize NAE from the ...
Studies on Plant-aphid Interactions: a Novel Role for Trehalose Metabolism in Arabidopsis Defense Against Green Peach Aphid
Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA), is a polyphagous insect that can infest over 100 families of economically important plants and is major pest for vegetable crops. This study utilizes the Arabidopsis-GPA model system with the aim to elucidate the role of the plant disaccharide trehalose in providing defense against GPA. This study demonstrates a novel role for TPS11 in providing defense against GPA. TPS11 expression was found to be transiently induced in Arabidopsis plants in response to GPA infestation and the TPS11 gene was required for curtailing GPA infestation. TPS11, which encodes for trehalose phosphate synthase and phosphatase activities, contributes to the transient increase in trehalose in the GPA infested tissues. This work suggests that TPS11-dependent trehalose has a signaling function in plant defense against GPA. in addition, trehalose also has a more direct role in curtailing GPA infestation on Arabidopsis. This work also shows that TPS11 is able to modulate both carbohydrate metabolism and plant defenses in response to GPA infestation. the expression of PAD4, an Arabidopsis gene required for phloem-based defenses against GPA, was found to be delayed in GPA infested tps11 mutant plants along with increased sucrose levels and lower starch levels as compared to the GPA infested wild type plants. This work provides clear evidence that starch metabolism in Arabidopsis is altered in response to GPA feeding and that TPS11-modulated increase in starch contributes to the curtailment of GPA infestation in Arabidopsis.
9-Lipoxygenase Oxylipin Pathway in Plant Response to Biotic Stress
The activity of plant 9-lipoxygenases (LOXs) influences the outcome of Arabidopsis thaliana interaction with pathogen and insects. Evidence provided here indicates that in Arabidopsis, 9-LOXs facilitate infestation by Myzus persicae, commonly known as the green peach aphid (GPA), a sap-sucking insect, and infection by the fungal pathogen Fusarium graminearum. in comparison to the wild-type plant, lox5 mutants, which are deficient in a 9-lipoxygenase, GPA population was smaller and the insect spent less time feeding from sieve elements and xylem, thus resulting in reduced water content and fecundity of GPA. LOX5 expression is induced rapidly in roots of GPA-infested plants. This increase in LOX5 expression is paralleled by an increase in LOX5-synthesized oxylipins in the root and petiole exudates of GPA-infested plants. Micrografting experiments demonstrated that GPA population size was smaller on plants in which the roots were of the lox5 mutant genotype. Exogenous treatment of lox5 mutant roots with 9-hydroxyoctadecanoic acid restored water content and population size of GPA on lox5 mutants. Together, these results suggest that LOX5 genotype in roots is critical for facilitating insect infestation of Arabidopsis. in Arabidopsis, 9-LOX function is also required for facilitating infection by F. graminearum, which is a leading cause of Fusarium head blight (FHB) disease in wheat and other small grain crops. Loss of LOX1 and LOX5 function resulted in enhanced resistance to F. graminearum infection. Similarly in wheat, RNA interference mediated silencing of the 9-LOX homolog TaLpx1, resulted in enhanced resistance to F. graminearum. Experiments in Arabidopsis indicate that 9-LOXs promote susceptibility to this fungus by suppressing the activation of salicylic acid-mediated defense responses that are important for basal resistance to this fungus. the lox1 and lox5 mutants were also compromised for systemic acquired resistance (SAR), an inducible defense mechanism that is systemically activated throughout a plant in response to a ...
Effects of a Methylcholanthrene-Induced Lymphosarcoma on the Blood of DBA/1J Mice
This investigation was concerned with characterizing a tumor line induced and maintained in this laboratory. Various chemical assays, cell counts, and electron microscopy were the methods employed to characterize the blood of mice bearing the tumor at days 3, 6, 9, and 12 after injection of the 1.2 x 10^8 tumor cells.
Molecular cloning and analysis of the genes for cotton palmitoyl-acyl carrier protein thioesterase (PATE) and Δ-12 fatty acid desaturase (FAD2-3) and construction of sense and anti-sense PATE plasmid vectors for altering oilseed composition of transgenic cotton plants.
A cotton PATE cDNA clone has a 1.7-kb insert with an coding region for 410 amino acids, lacking codons for the three N-terminal amino acids. The predicted amino acid sequence of the PATE preprotein has a characteristic stromal-targeting domain and a 63% identity to the Arabidopsis FatB1 thioesterase sequence. A cotton genomic clone containing a 17.4-kb DNA segment was found to encompass a palmitoyl-ACP thioesterase (FatB1) gene. The gene spans 3.6 kb with six exons and five introns. The six exons are identical in nucleotide sequence to the open reading frame of the corresponding cDNA, and would encode a preprotein of 413 amino acids. The preprotein is identified as a FatB thioesterase from its deduced amino acid sequence similarity to those of other FatB thioesterase preproteins. A 5'-flanking region of 914 bp was sequenced, with the potential promoter/enhancer elements including basic helix-loop-helix elements (E box). Alkaline blot hybridization of cotton genomic DNA suggests the presence at least two FatB1 thioesterase genes in cotton. Four plasmid constructs for both constitutive and seed-specific anti-sense RNA suppression and gene-transgene co- suppression of PATE gene expression were successfully generated. Two overlapping cotton genomic clones were found to encompass a Δ-12 fatty acid desaturase (FAD2-3) gene. The continuous FAD2-3 coding region is 1,155 bp and would encode a protein of 384 amino acids. The FAD2-3 gene has one large intron of 2,967 bp entirely within its 5'-untranslated region. Several potential promoter/enhancer elements, including several light responsive motifs occur in the 5'-flanking region. Yeast cells transformed with a plasmid construct containing the cotton FAD2-3 coding region accumulate an appreciable amount of linoleic acid (18:2), not normally present in wild-type yeast cells, indicating that the gene encodes a functional FAD2 enzyme.
Biochemical Systematics of the Genus Sophora
Three unusual amino acids, y-amino-n-butyric acid, pipecolic acid, and 4-hydroxypipecolic acid, and an uncommon dipeptide, y-glutamyltyrosine, have been isolated and characterized from the seeds of members of the genus Sophora. Structural proof of these compounds was carried out by paper chromatography, thin-layer chromatography, column chromatography on amino acid analyzer, infrared, nuclear magnetic resonance, mass spectrometry, and C, H, N analysis. The presence and absence of these compounds was used as a criterion for the classification of 23 species of the genus Sophora. A phylogenetic classification which seems to follow the morphological taxonomy of this genus was carried out on the basis of seeds that contained pipecolic acid, those which did not contain pipecolic acid, and plants which contained both pipecolic acid and 4-hydroxypipecolic acids. Another chemical classification was also introduced based on the presence and absence of y-amino-n-butyric acid and y-glutamyltyrosine.
Microsatellite-based genetic profiling for the management of wild and captive flamingo populations.
Flamingo species generate tremendous interest whether they are small captive groups or wild populations numbering in the thousands. Genetic pedigrees are invaluable for maintaining maximum genetic diversity in captive, as well as wild, populations. However, presently there is a general lack of genetic data for flamingo populations. Microsatellites are loci composed of 2-6 base pair tandem repeats, scattered throughout higher eukaryotic genomes, often exhibiting high levels of polymorphism and heterozygosity. These loci are thus important genetic markers for identity, parentage and population studies. Here, six microsatellite loci were isolated from a microsatellite-enriched Caribbean flamingo partial genomic library. Two are compound complex repeats and four are perfect trinucleotide repeats. Each locus was amplified from Caribbean, African greater, Chilean and lesser flamingo genomic DNAs. Heterozygosity frequencies were calculated for Caribbean (range 0.12-0.90) and African greater flamingos (range 0.23-0.94) loci. All six microsatellite loci were found to be in Hardy-Weinberg equilibrium and linkage disequilibrium analyses did not suggest linkage for any pair of two greater flamingo subspecies (African and Caribbean) loci. At least five of the loci also exhibit polymorphism in Chilean and lesser flamingos, but due to small sample numbers, relevant allele/heterozygosity frequency calculations could not be estimated. Nucleotide sequence comparisons of the amplicons derived from the four flamingo groups reveal a high level of sequence conservation at all loci. Although small sample numbers again limit the data for lesser flamingos and to some degree for the Chilean birds, the sequences of the two greater flamingo subspecies were identical and the number of nonconserved nucleotides appears to be higher for lesser/greater comparisons than for Chilean/greater comparisons. This is consistent with Chilean flamingos being a different species within the same genus as the greater flamingos, while lesser flamingos belong to a separate genus. Parentage analyses on suggested African greater flamingo family groups from ...
Analysis of the Expression Profiles of Two Isoforms of the Antifungal Protein Osmotin from Gossypium hirsutum
The expression of two cotton osmotin genes was evaluated in terms of the mRNA and protein expression patterns in response to chemical inducers such as ethylene, hydrogen peroxide, and sodium chloride. Reverse transcriptase-polymerase chain reactions (RT-PCR) indicated that osmotin mRNAs are expressed constitutively in root tissues of cotton plants, and that they are rapidly induced in leaf and stem tissues upon ethylene treatment. Real time RT-PCR indicated that osmotin transcript levels were induced 2 to 4 h after treatment with ethephon. The osmotin mRNA levels appear to increase 12 h after treatment, decrease, and then increase again. The osmotin protein expression patterns were analyzed in Western blot analyses using an anti-osmotin antibody preparation. A 24-KDa protein band was detected from cotton plants treated with the inducers. The 24-KDa osmotin proteins were induced 4 h after treatment with ethephon, while down-regulated 96 h after treatment. Multiple osmotin isoforms were observed to be induced in cotton plants upon treatment with ethephon by two-dimensional gel electrophoresis. One goal of this dissertation research was to genetically engineer two cotton osmotin genes to routinely overproduce their antifungal proteins in transgenic Arabidopsis and cotton plants as a natural defense against fungal infections, using co-cultivation with Agrobacterium tumefaciens cells harboring pCAMBIA 2301 vector constructs containing the osmotin genes. Many transgenic Arabidopsis and cotton plants were generated. However, genomic blotting analyses indicated the absence of the osmotin transgenes, but the presence of GUS genes from the vector cassette. Alkaline blot analyses of the vector DNAs from transformed Agrobacterium cells confirmed that an anomalous DNA structural rearrangement or aberrant recombination event probably occurred in the Agrobacterium cells, interdicting the integration of osmotin transgenes into the Arabidopsis and cotton plants. This research provides crucial baseline information on expression of cotton osmotin mRNAs and proteins.
Identification and characterization of an incomplete root hair elongation (IRE)-like gene in Medicago truncatula (L.) root nodules.
Cloning and molecular characterization of new genes constitutes a useful approach in studying the symbiotic interactions between the model plant Medicago truncatula and Synorhizobium meliloti. Large numbers of expressed sequence tags (ESTs) available for Medicago truncatula, along with numerous cDNA, oligonucleotides, and Affimetrix DNA microarray chips, represent useful tools for gene discovery. In an attempt to identify a new gene that might be involved in the process of nodulation in Medicago truncatula, preliminary data reported by Fedorova et al. (2002), who identified 340 putative gene products or tentative consensus sequences (TCs) expressed only in nodules, was used. This research was focused on TC33166 (TC103185), which has 3 ESTs in the TC, and whose strongest BLASTX hit of TC103185 is the incomplete root hair elongation (IRE) protein kinase-like protein (NP_192429) from Arabidopsis thaliana. The Arabidopsis IRE gene is required for normal root hair growth, and a role in apical growth was suggested (Oyama et al., 2002). Infection thread growth can be looked at as an inward growth of the root hair. Thus, TC103185 was a good candidate for identifying a gene that may be involved in early events of nodulation. MtIRE (GenBank accession AC122727) is organized in 17 exons and 16 introns, similarly to the Arabidopsis IRE gene. MtIRE is a new member of the IRE family and it is a putative Ser/Thr protein kinase. MtIRE is a nodule- and flower-specific gene, suggesting that nodulation may have recruited it from other developmental processes. MtIRE is likely to be involved in the invasion process, or in the maturation of the symbiosome, or of the cells that contain rhizobia, rather than infection thread initiation and elongation or in nitrogen fixation. Nodule invasion precedes the onset of MtIRE expression and the expression pattern changes in time within the nodule. RNA interference results support MtIRE ...
Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant
Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, the 550 kDa holoenzyme and 140 kDa and 120 kDa trimers disappeared and were replaced with a previously unseen 480 kDa holoenzyme pyrB- strain. The results suggest that B. cepacia has two genes that encode ATCase. ATC1 is constitutive and ATC2 is expressed only in the absence of ATC1 activity. To check for the virulence of these two strains, a eukaryotic model virulence test was performed using Caenorhabditis elegans (C. elegans). The pyrB1+pyrB2+ (wild type) B cepacia killed the nematode but pyrB1-pyrB2+ B. cepacia had lost its virulence against C. elegans. This suggests that ATC1 (pyrB1) is involved in virulence ...
Callus Development and Organogenesis in Cultured Explants of Cowpea (Vigna unguiculata (L.) Walp
Cowpea, Vigna unguiculata (L.) Walp is an excellent source of protein, vitamins and minerals and a major food crop many parts of Africa. Optimal production levels are hampered by insect pests and diseases. Biotechnological techniques such as tissue culture and genetic engineering can aid in the development of varieties with resistance to insect pests and diseases. The objective of this study was to investigate conditions necessary for the development of a reproducible tissue culture system that can be applied to regenerate transformed cells from culture. The in vitro manipulation of cowpea using Murashige and Skoog (MS) medium, auxins and cytokinins resulted in the formation of callus and rhizogenesis. Calli that were formed were separated into six classes based on color and texture. Yellowish friable callus, yellowish compact, soft yellowish callus and green and white were composed of largely vacuolated cells and were non-regenerative. Friable green callus was the most prevalent callus type and could form of roots in some hormone combinations. Green spots were formed on hard compact green callus. The green spots became nodular, forming root primordia and ultimately giving rise to roots. None of the six calli types gave rise to the formation of shoots. Embryogenic callus was induced from cowpea explants cultured on MS medium supplemented with dicamba and picloram. Embryogenic suspension cultures were initiated from callus induced on MS supplemented with 3.0 mg/L dicamba or picloram and conditions for maintenance of embryogenic suspension cultures were evaluated. Somatic embryos were formed in suspension cultures. Attempts to convert and germinate the somatic embryos resulted in the formation of callus or formation of appendages on the somatic embryos or in the death of the embryos. The appendages formed roots on prolonged culture. Further research is needed to determine appropriate optimal conditions for embryo conversion and germination and ultimately plant ...
Isolation and Characterization of Polymorphic Loci from the Caribbean Flamingo (Phoenicopterus ruber ruber): New Tools for Wildlife Management
Methods to determine genetic diversity and relatedness within populations are essential tools for proper wildlife management. Today the approach of choice is polymerase chain reaction-based microsatellite analysis. Seven new polymorphic loci were isolated from a microsatellite-enriched Caribbean flamingo genomic library and used to characterize survey populations of Caribbean and African greater flamingos. In addition, four of these loci were used to verify parentage relationships within a captive-breeding population of African greater flamingos. Parentage predictions based upon gamekeeper observations of breeding and nesting did not always agree with genetic-based parentage analyses of the nine suggested family groups. Four family groups were supported (groups I, II, III and VI) by there results. However, an analysis of the remaining five suggested groups, with a total of eight offspring/dam and eight offspring/sire suggested relationships, yielded seven exclusions of the suggested dam and six exclusions of the suggested sire. This put the overall suggested dam exclusion rate at 35% and exclusion rate for suggested sires at 29%. Although the keeper observation data for our family groups must be considered a variable of concern at this time, these findings are certainly suggestive that more carefully controlled studies may reveal that flamingos are not monogamous as long accepted, but rather socially monogamous or even promiscuous. Thus we have now been able to both characterize and demonstrate the utility of our polymorphic microsatellite loci. We hope these results will interest additional wildlife facilities in further parentage and behavioral studies that will collectively aid to improve monitoring and maintenance of genetic diversity, and as provide better insight into breeding habits of both wild and captive populations.
Impaired virulence factor production in a dihydroorotate dehydrogenase mutant (pyrD) of Pseudomonas aeruginosa.
Previous research in our laboratory showed that when knockout mutations were created in the pyrB and pyrC genes of the pyrimidine pathway in Pseudomonas aeruginosa, not only were the resultant mutants auxotrophic for pyrimidines but they were also impaired in virulence factor production. Such a correlation had not been previously reported for P. aeruginosa, a ubiquitous opportunistic pathogen in humans. In an earlier study it was reported that mutants blocked in one of the first three enzymes of the pyrimidine pathway in the non-pathogenic strain P. putida M produced no pyoverdin pigment while mutants blocked in the later steps produced copious amounts of pigment, just like the wild type. This study probed for the same connection between pyrimidine auxotrophy and pigment production applied in P. aeruginosa. To that end a knockout mutation was created in pyrD, the fourth step in the pyrimidine pathway which encodes dihydroorotate dehydrogenase. The resulting mutant required pyrimidines for growth but produced wild type pigment levels. Since the pigment pyoverdin is a siderophore it may also be considered a virulence factor, other virulence factors were quantified in the mutant. These included casein protease, hemolysin, elastase, swimming, swarming and twitching motility, and iron binding capacity. In all cases these virulence factors were significantly decreased in the mutant. Even supplementing with uracil did not attain wild type levels. Starvation of the pyrimidine mutant for uracil caused increased specific activity of the pyrimidine enzymes, suggesting that regulation of the pyrimidine pathway occurred at the level of transcription. This effect has also been reported for P. oleovorans. The present research consolidates the idea that pyrimidine auxotrophs cause decreased pathogenicity in P. aeruginosa. Such a finding may open the search for chemotherapy targets in cystic fibrosis and burn victims where P. aeruginosa is an infecting agent.
Engineered Microbial Consortium for the Efficient Conversion of Biomass to Biofuels
Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The first objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself. The hydrolytic function of crude cellulosome extracts from C. cellulolyticum on carboxymethyl cellulose (CMC) with 0, 5, 10, 15, 20 and 25% (v/v) ethanol was determined. Results indicated that the endoglucanase activity of the cellulosome incubated in 5% and 10% ethanol was significantly different from a control without ethanol addition. Furthermore a significant difference was observed in endoglucanase activity for cellulosome incubated in 5%, 10%, 15%, 20% and 25% ethanol in a standalone experiment. Endoglucanase activity continued to be observed for up to 25% ethanol, indicating that cellulosome function in ethanol will not be an impediment to future efforts towards engineering increasing production titers to levels at least as high as the current physiological limits of the most tolerant ethanologenic microbes. The second objective of this work was to study bioethanol production by a microbial co-culture involving Clostridium cellulolyticum and a recombinant Zymomonas mobilis engineered for the utilization of oligodextrans. The recombinant Z. mobilis ZM4 pAA1 and wild type ZM4 were first tested on RM medium (ATCC 1341) containing 2% cellobiose as the carbon source. Ethanol production from the recombinant Z. mobilis was three times that observed from the wild type Z. mobilis. Concomitant with ethanol production was the reduction in OD from 2.00 to 1.580, indicating the consumption of cellobiose. No such change in OD was observed from the wild type. The recombinant ZM4 was then co-cultured with C. cellulolyticum using cellobiose and microcrystalline cellulose respectively as carbon sources. Results indicate that the recombinant ZM4 acted synergistically with C. cellulolyticum ...
Investigating the Ability of Pseudomonas aeruginosa pyrE Mutants to Grow and Produce Virulence Factors
Pseudomonas aeruginosa are medically important bacteria that are notorious for causing nosocomial infections. To gain more knowledge into understanding how this organism operates, it was decided to explore the pyrimidine biosynthetic pathway. Pyrimidine synthesis, being one half of the DNA structure, makes it a very important pathway to the organism’s survivability. With previous studies being done on various genes in the pathway, pyrE has not been studied to the fullest extent. To study the function of pyrE, a site directed mutagenesis was done to completely knock out pyrE, which encodes the protein orotate phosphoribosyl transferase that is responsible for converting orotate into orotate monophosphate (OMP). A mutation in this step leads to accumulation and secretion of orotate into the medium. Analyzing virulence factors produced by the mutant and comparing to the wild type, some intriguing features of the mutant were discovered. One of the findings was the over expression of virulence factors pyoverdin and pyocyanin. Pyocyanin over expression, based on the results of this study, is due to the accumulation of orotate while over production of pyoverdin is due to the accumulation of dihydroorotate. The other virulence factors studied were motility assays, exoproducts, and growth analysis. All virulence factor production was reduced significantly in the mutant compared to the wild type. The casein protease assay showed absolutely no production of proteases in the mutant. The conclusion is that orotate accumulation leads to a significant reduction in virulence factor production in Pseudomonas aeruginosa. In addition to that, it was found that excess orotate in the wild type led to a decrease in quorum sensing regulated products.
The regulatory roles of PyrR and Crc in pyrimidine metabolism in Pseudomonas aeruginosa
The regulatory gene for pyrimidine biosynthesis has been identified and designated pyrR. The pyrR gene product was purified to homogeneity and found to have a monomeric molecular mass of 19 kDa. The pyrR gene is located directly upstream of the pyrBC' genes in the pyrRBC' operon. Insertional mutagenesis of pyrR led to a 50- 70% decrease in the expression of pyrBC', pyrD, pyrE and pyrF while pyrC was unchanged. This suggests that PyrR is a positive activator. The upstream regions of the pyrD, pyrE and pyrF genes contain a common conserved 9 bp sequence to which the purified PyrR protein is proposed to bind. This consensus sequence is absent in pyrC but is present, as an imperfect inverted repeat separated by 11 bp, within the promoter region of pyrR. Gel retardation assays using upstream DNA fragments proved PyrR binds to the DNA of pyrD, pyrE, pyrF as well as pyrR. This suggests that expression of pyrR is autoregulated; moreover, a stable stem-loop structure was determined in the pyrR promoter region such that the SD sequence and the translation start codon for pyrR is sequestered. β-galactosidase activity from transcriptional pyrR::lacZ fusion assays, showed a two-fold in increase when expressed in a pyrR- strain compared to the isogenic pyrR+ strain. Thus, pyrR is negatively regulated while the other pyr genes (except pyrC) are positively activated by PyrR. That no regulation was seen for pyrC is in keeping with the recent discovery of a second functional pyrC that is not regulated in P. aeruginosa. Gel filtration chromatography shows the PyrR protein exists in a dynamic equilibrium, and it is proposed that PyrR functions as a monomer in activating pyrD, pyrE and pyrF and as a dimeric repressor for pyrR by binding to the inverted repeat. A related study discovered that the catabolite repression ...
DNA Degradation as an Indicator of Post-Mortem Interval
The question of post-mortem interval (PMI) or time since death is often the most sought after piece of information associated with a medical death investigation. Based on the observation that DNA degradation disproportionately affects the analysis of larger genetic loci, it was proposed that DNA degradation, as a result of autolysis or putrefaction, could prove suitable as a potential rate-of-change indicator of PMI. Nine randomly amplified polymorphic DNA (RAPD) analysis primers and three sets of directed amplification primers were evaluated to determine their suitability for use in assessing the degree of DNA fragmentation in tissue samples. They were assessed for amplicon specificity, total DNA target sensitivity, allele monomorphism and the observance of degradation-based profile changes. Markers meeting the requisite criteria were then used to assess a range samples degraded under controlled and uncontrolled conditions. Tissue samples collected from seven domestic pigs (Sus scrofa) were incubated under controlled laboratory or uncontrolled field conditions to produce samples simulating those potentially collected in a forensic case. DNA samples isolated from these specimens were then analyzed at those loci which had been determined to meet the requisite criteria. Collectively, data generated from these analyses indicate that genetic profiles generated by this approach can provide information useful for estimating the post-mortem interval, with the locus and amplicons used being most useful during the first 72 hours after death.
A Novel Mechanism for Site-Directed Mutagenesis of Large Catabolic Plasmids Using Natural Transformation
Natural transformation is the process by which cells take up DNA from the surrounding medium under physiological conditions, altering the genotype in a heritable fashion. This occurs without chemical or physical treatment of the cells. Certain Acinetobacter strains exhibit a strong tendency to incorporate homologous DNA into their chromosomes by natural transformation. Transformation in Acinetobacter exhibits several unique properties that indicate this system's superiority as a model for transformation studies or studies which benefit from the use of transformation as an experimental method of gene manipulation. Pseudomonas putida is the natural host of TOL plasmids, ranging between 50 kbp and 300 kbp in size and encoding genes for the catabolism of toluene, meta-toluate, and xylene. These very large, single-copy plasmids are difficult to isolate, manipulate, or modify in vitro. In this study, the TOL plasmid pDKR1 was introduced into Acinetobacter calcoaceticus strains and genetically engineered utilizing natural transformation as part of the process. Following engineering by transformation, the recombinant DNA molecule was returned to the native genetic background of the original host P. putida strain. Specific parameters for the successful manipulation of large plasmids by natural transformation in Acinetobacter were identified and are outlined. The effects of growth phase, total transforming DNA concentration, transforming DNA conformation, and gene dosage on transformation efficiency are presented. Addition of Acinetobacter plasmid DNA sequences to the manipulated constructs did not have an effect on transformation rates. Results suggest that a broadly applicable and efficient method to carry out site-directed genetic manipulations of large plasmids has been identified. The ability to easily reintroduce the recombinant DNA molecules back into the original host organism was maintained.
Regulation, Evolution, and Properties of the ato Qperon and its Gene Products in Escherichia coli
The regulation of short chain fatty acid metabolism has been examined. Metabolism of acetoacetate, and short chain fatty acids such as butyrate and valerate, is predicated upon the expression of genes of the ato operon. Acetoacetate induces expression of a CoA transferase (encoded by the atoDA genes) and expression of a thiolase (encoded by the atoB gene). Metabolism of saturated short chain fatty acids requires the activities of the transferase and thiolase and enzymes of 6-oxidation as well. Spontaneous mutant strains were isolated that were either constitutive or that were inducible by valerate or butyrate instead of acetoacetate.
Isolation and analysis of cotton genomic clones encompassing a fatty acid desaturase (FAD2) gene
Polyunsaturated fatty acids are major structural components of plant chloroplast and endoplasmic reticulum membranes. Two fatty acid desaturases (designated FAD2 and FAD3) desaturate 75% of the fatty acids in the endoplasmic reticulum. The w -6 fatty acid desaturase (FAD2) may be responsible for cold acclimation response, since polyunsaturated phospholipids are important in helping maintain plant viability at lowered temperatures. To study regulation of FAD2 gene expression in cotton, a FAD2 gene was isolated from two genomic libraries using an Arabidopsis FAD2 hybridization probe and a cotton FAD2 5¢ -flanking region gene-specific probe, respectively. A cotton FAD2 gene was found to be in two overlapping genomic clones by physical mapping and DNA sequencing. The cloned DNA fragments are identical in size to cotton FAD2 genomic DNA fragments shown by genomic blot hybridization. The cotton FAD2 coding region has 1,155 bp with no introns and would encode a putative polypeptide of 384 amino acids. The cotton FAD2 enzyme has a high identity of 75% with other plant FAD2 enzymes. The enzyme has three histidine-rich motifs that are conserved in all plant membrane desaturases. These histidine boxes may be the iron-binding domains for reduction of oxygen during desaturation. To confirm that this FAD2 enzyme is functional, a plasmid construct containing the cotton FAD2 coding region was transformed into Saccharomyces cerevisiae. The transformed yeast cells were able to catalyze the conversion of oleic acid (C18:1) into linoleic acid (C18:2). The FAD2 gene contains an intron of 2,967 bp in its 5¢ -flanking region, 11 bp upstream from the initiation codon. The intron could be essential for transcriptional regulation of FAD2 gene expression. Several putative promoter elements occur in the 5¢ -flanking region of this gene. A potential TATA basal promoter element occurs at 41 bp upstream from the cap site. Two presumptive helix-loop-helix (bHLH) ...
Cell-Free Recovery and Isotopic Identification of Cyanide Degrading Enzymes from Pseudomonas Fluorescens
Cell-free extracts from Pseudomonas fluorescens NCIMB 11764 catalyzed the degradation of cyanide into products that included C02, formic acid, formamide and ammonia. Cyanide-degrading activity was localized to cytosolic cell fractions and was observed at substrate concentrations as high as 100 mM. Two cyanide degrading activities were identified by: (i) the determination of reaction products stoichiometries, (ii) requirements for NADH and oxygen, and (iii) kinetic analysis. The first activity produced CO2 and NH3 as reaction products, was dependent on oxygen and NADH for activity, and displayed an apparent Km for cyanide of 1.2 mM. The second activity generated formic acid (and NH3) pfus formamide as reaction products, was oxygen independent, and had an apparent Km of 12 mM for cyanide. The first enzymatic activity was identified as cyanide oxygenase whereas the second activity consists of two enzymes, a cyanide nitrilase (dihydratase) and putative cyanide hydratase. In addition to these enzymes, cyanide-grown cells were also induced for formate dehydrogenase (FDH), providing a means of recycling NADH utilized by cyanide oxygenase.
Nucleotide Sequence Determination, Subcloning, Expression and Characterization of the xy1LT Region of the Pseudomonas putida TOL Plasmid pDK1
The complete nucleotide sequence of the region encoding the DHCDH function of the pDK1 lower operon was determined. DNA analysis has shown the presence of two open reading frames, one gene consisting of 777 nucleotides encoding a polypeptide of 27.85 kDa and another gene of 303 nucleotides encoding a polypeptide of 11.13 kDa. The results of enzymatic expression studies suggest that DHCDH activity is associated only with xy1L. However although the addition of xy1T cell-free extracts to xy1L cell-free extracts does not produce an increase in DHCDH activity, subclones carrying both xy1L and xy1T exhibit 300- 400% more DHCDH activity than subclones carrying only xy1L.
Effects of a Methylcholanthrene-Induced Lymphosarcoma on Various Tissues of DBA/1J and Swiss White Mice
This investigation was concerned with characterizing effects of this tumor line on lipid metabolism in DBA/lJ mice and serum protein levels and cellular changes in DBA/lJ and Swiss white mice. Total lipids, lipid phosphorus, neutral lipids, and changes in fatty acids were determined in liver, spleen, skin, and tumor of DBA/lJ mice bearing the lymphosarcoma at various days after injection of tumor cells.
Construction of a Cloning Vector Based upon a Rhizobium Plasmid Origin of Replication and its Application to Genetic Engineering of Rhizobium Strains
Rhizobia are Gram-negative, rod-shaped, soil bacteria with the ability to fix atmospheric nitrogen into ammonia as symbiont bacteroids within nodules of leguminous plant roots. Here, resident Rhizobium plasmids were studied as possible sources of components for the construction of a cloning vector for Rhizobium species.
Subcloning and Nucleotide Sequence of Two Positive Acting Regulatory Genes, xy1R and xy1S, from the Pseudomonas putida HS1 TOL Plasmid PDK1
TOL plasmids of Pseudomonas putida encode enzymes for the degradation of toluene and related aromatics. These genes are organized into two operons regulated by the Xy1R and Xy1S transcriptional activators. Previous analysis of the TOL pDK1 catechol-2,3-dioxygenase gene (xy1E) and a comparison of this gene to xy1E from the related TOL plasmid pWW0, revealed the existance of a substantial level of sequence homology (82%).
Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa
The Pseudomonas aeruginosa ATCase was cloned and sequenced to determine the correct size, subunit composition and architecture of this pivotal enzyme in pyrimidine biosynthesis. During the course of this work, it was determined that the ATCase of Pseudomonas was not 360,000 Da but rather present in a complex of 484,000 Da consisting of two different polypeptides (36,000 Da and 44,000 Da) with an architecture similar to that of E. coli ATCase, 2(C3):3(r2). However, there was no regulatory polypeptide found in the Pseudomonas ATCase.
Construction of a Pseudomonas aeruginosa Dihydroorotase Mutant and the Discovery of a Novel Link between Pyrimidine Biosynthetic Intermediates and the Ability to Produce Virulence Factors
The ability to synthesize pyrimidine nucleotides is essential for most organisms. Pyrimidines are required for RNA and DNA synthesis, as well as cell wall synthesis and the metabolism of certain carbohydrates. Recent findings, however, indicate that the pyrimidine biosynthetic pathway and its intermediates maybe more important for bacterial metabolism than originally thought. Maksimova et al., 1994, reported that a P. putida M, pyrimidine auxotroph in the third step of the pathway, dihydroorotase (DHOase), failed to produce the siderophore pyoverdin. We created a PAO1 DHOase pyrimidine auxotroph to determine if this was also true for P. aeruginosa. Creation of this mutant was a two-step process, as P. aeruginosa has two pyrC genes (pyrC and pyrC2), both of which encode active DHOase enzymes. The pyrC gene was inactivated by gene replacement with a truncated form of the gene. Next, the pyrC2 gene was insertionally inactivated with the aacC1 gentamicin resistance gene, isolated from pCGMW. The resulting pyrimidine auxotroph produced significantly less pyoverdin than did the wild type. In addition, the mutant produced 40% less of the phenazine antibiotic, pyocyanin, than did the wild type. As both of these compounds have been reported to be vital to the virulence response of P. aeruginosa, we decided to test the ability of the DHOase mutant strain to produce other virulence factors as well. Here we report that a block in the conversion of carbamoyl aspartate (CAA) to dihydroorotate significantly impairs the ability of P. aeruginosa to affect virulence. We believe that the accumulation of CAA in the cell is the root cause of this observed defect. This research demonstrates a potential role for pyrimidine intermediates in the virulence response of P. aeruginosa and may lead to novel targets for chemotherapy against P. aeruginosa infections.
Analysis of a Cotton Gene Cluster for the Antifungal Protein Osmotin
Three overlapping genomic clones covering 29.0 kilobases of cotton DNA were found to encompass a cluster of two presumptive osmotin genes (OSMI and OSMII) and two osmotin pseudogenes (OSMIII and OSMIV). A segment of 16,007 basepairs of genomic DNA was sequenced from the overlapping genomic clones (GenBank Accessions AY303690 and AF304007). The two cotton osmotin genes were found to have open reading frames of 729 basepairs without any introns, and would encode presumptive osmotin preproteins of 242 amino acids. The open reading frames of the genes are identical in sequence to two corresponding cDNA clones (GenBank Accessions AF192271 and AY301283). The two cDNA inserts are almost full-length, since one lacks codons for the four N-terminal amino acids, and the other cDNA insert lacks the coding region for the 34 N-terminal amino acids. The cotton osmotin preproteins can be identified as PR5 proteins from their similarities to the deduced amino acid sequences of other plant osmotin PR5 preproteins. The preproteins would have N-terminal signal sequences of 24 amino acids, and the mature 24 kilodalton isoforms would likely be targeted for extracellular secretion. Prospective promoter elements, including two ethylene response elements, implicated as being positive regulatory elements in the expression of a number of PR-proteins, occur in the 5'-flanking regions. The mature osmotin proteins accumulate in cotton plants treated with the inducers ethephon and hydrogen peroxide. Thus, the two cotton osmotin genes encode osmotin proteins. The coding regions of the two genes have been expressed and isolated as fusion polypeptides in a bacterial expression system. Binary constructs containing the open reading frames of the two osmotin genes under the control of the 35S CaMV promoter have been generated for eventual production of transgenic Arabidopsis and cotton plants for potential constitutive expression of the osmotin proteins for increased resistance against fungal pathogens.
Structure-Function Studies on Aspartate Transcarbamoylase and Regulation of Pyrimidine Biosynthesis by a Positive Activator Protein, PyrR in Pseudomonas putida
The regulation of pyrimidine biosynthesis was studied in Pseudomonas putida. The biosynthetic and salvage pathways provide pyrimidine nucleotides for RNA, DNA, cell membrane and cell wall biosynthesis. Pyrimidine metabolism is intensely studied because many of its enzymes are targets for chemotheraphy. Four aspects of pyrimidine regulation are described in this dissertation. Chapter I compares the salvage pathways of Escherichia coli and P. putida. Surprisingly, P. putida lacks several salvage enzymes including nucleoside kinases, uridine phosphorylase and cytidine deaminase. Without a functional nucleoside kinase, it was impossible to feed exogenous uridine to P. putida. To obviate this problem, uridine kinase was transferred to P. putida from E. coli and shown to function in this heterologous host. Chapter II details the enzymology of Pseudomonas aspartate transcarbamoylase (ATCase), its allosteric regulation and how it is assembled. The E. coli ATCase is a dodecamer of two different polypeptides, encoded by pyrBI. Six regulatory (PyrI) and six catalytic (PyrB) polypeptides assemble from two preformed trimers (B3) and three preformed regulatory dimers (I2) in the conserved 2B3:3I2 molecular structure. The Pseudomonas ATCase also assembles from two different polypeptides encoded by pyrBC'. However, a PyrB polypeptide combines with a PyrC. polypeptide to form a PyrB:PyrC. protomer; six of these assemble into a dodecamer of structure 2B3:3C'2. pyrC' encodes an inactive dihydroorotase with pyrB and pyrC' overlapping by 4 bp. Chapter III explores how catabolite repression affects pyrimidine metabolism. The global catabolite repression control protein, Crc, has been shown to affect pyrimidine metabolism in a number of ways. This includes orotate transport for use as pyrimidine, carbon and nitrogen sources. Orotate is important because it interacts with PyrR in repressing the pyr genes. Chapter IV describes PyrR, the positive activator of the pyrimidine pathway. As with other positive activator proteins, when pyrimidine nucleotides are depleted, PyrR binds to ...
Origin and Role of Factor Viia
Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, Factor VII and in small amounts in its activated form, Factor VIIa. However, the mechanism of initial generation of Factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases Factor VII activating protease, and hepsin play a role in activating Factor VII, however, it has remained controversial. In this work I estimated the levels of Factor VIIa and Factor VII for the first time in adult zebrafish plasma and also reevaluated the role of the above two serine proteases in activating Factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease did not reduce Factor VIIa levels while hepsin knockdown reduced Factor VIIa levels. After identifying role of hepsin in Factor VII activation in zebrafish, I wanted to identify novel serine proteases playing a role in Factor VII activation. However, a large scale knockdown of all serine proteases in zebrafish genome using available knockdown techniques is prohibitively expensive. Hence, I developed an inexpensive gene knockdown method which was validated with IIb gene knockdown, and knockdown all serine proteases in zebrafish genome. On performing the genetic screen I identified 2 novel genes, hepatocytes growth factor like and prostasin involved in Factor VII activation.
Dna Profiling of Captive Roseate Spoonbill (Ajaia Ajaja) Populations As a Mechanism of Determining Lineage in Colonial Nesting Birds.
Roseate spoonbills are colonial nesting birds with breeding grounds extending from the United States Gulf coast to the pampas of Argentina. The U.S. population suffered a severe bottleneck from 1890 to 1920. The population's recovery was slow and partially credited to migrations from Mexican rookeries, but a gene pool reduction would be expected. Five polymorphic Spoonbill autosomal short tandem repeat (STR) loci [three (GAT)n, one (AAAG)n and one (GT)n] and one Z/W-linked microsatellite exhibiting sex-specific dimorphism were isolated and characterized. The Z/W-linked STR locus accurately confirmed the sex of each bird. Allelic profiles for 51 spoonbills obtained from Dallas (Texas), Fort Worth (Texas) and Sedgwick County (Kansas) zoos revealed a non-continuous distribution of allele frequencies, consistent with the effects of a population bottleneck. Allelic frequencies also differed significantly between the isolated zoo populations. Although extra-pair copulations were suspected and difficult to document, zoos commonly used observational studies of mating pairs to determine familial relationships among adults and offspring. STR parentage analysis of recorded family relationships excluded one or both parents in 10/25 cases studied and it was further possible to identify alternative likely parents in each case. Mistaken familial relationships quickly lead to the loss of genetic variability in captive populations. Here, a decreased heterozygosity (HO) in 2nd generation captive-bred birds was observed at 3 out of 4 loci evaluated. Although these results could not be statistically validated because of the small number of individuals available for study (15 wild birds with no offspring vs. eight 2nd generation captive birds), they are considered biologically important, as decreased HO is an indicator of inbreeding and this apparent decrease occurred within two generations of removal from the wild. Collectively, the evidence obtained from this study suggests that captive spoonbill populations are experiencing rapid loss of diversity from an already depleted wild gene ...
Posttranslational Modification of Proteins by ADP-ribosylation
This work presents the development of a highly sensitive and selective chemical assay for mono(ADP-ribose) residues covalently bound to proteins in vivo. An extensive review of the literature is presented in the introduction of this work. The physiological.functions of mono(ADP-ribosyl)transferase activities associated with certain bacterial toxins (e.g., diphtheria, cholera and pertussis toxins) are well established. However, the roles of endogenous vertebrate transferases are unknown. The elucidation of the roles of these cellular transferases will likely require identification of the physiologically relevant target proteins. Toward this end, it will also be important to identify the types of (ADP-ribose)-protein linkages present in vivo. ADP-ribosylation reactions catalyzed by the different bacterial and vertebrate transferases are specific for different amino acid acceptors in vitro. However, the vertebrate transferases that have been characterized thus far are NAD:arginine mono(ADP-ribosyl)transferases. The work presented here describes the development of a chemical assay for the detection of in vivo modified, ADP-ribosylated proteins containing N-glycosylic linkages to arginine. The assay was applied to the analysis of ADP-ribose residues in adult rat liver. The strategy employed for detection of protein-bound ADP-ribose residues eliminated potential artifacts arising from trapped nucleotides (or their degradation products), since the acid-insoluble material was completely dissolved in a strongly denaturing solution and freed of non-covalently bound nucleotides prior to chemical release from proteins. Thus, the studies presented here demonstrate the unambiguous detection and quantification of protein-bound ADP-ribose residues in adult rat liver. "Arginine-linked" mono(ADP-ribose) residues (31.8 pmol/mg protein) were present in vivo at a level almost 400-fold higher than poly(ADP-ribose). A minor fraction (23%) of the ADP—ribose residues detected were bound via a second more labile linkage with chemical properties very similar to those described previously for carboxlylate esterlinked ADP-ribose. After fractionation of rat liver proteins by gel filtration HPLC, the major peak of "arginine-linked" ADP-ribose residues ...
Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis
Murine neuronal networks, derived from embryonic frontal cortex (FC) tissue grown on microelectrode arrays, were used to investigate zinc toxicity at concentrations ranging from 20 to 2000 mM total zinc acetate added to the culture medium. Continual multi-channel recording of spontaneous action potential generation allowed a quantitative analysis of the temporal evolution of network spike activity generation at specific zinc acetate concentrations. Cultures responded with immediate concentration-dependent excitation lasting from 5 to 50 min, consisting of increased spiking and enhanced, coordinated bursting. This was followed by irreversible activity decay. The time to 50% and 90% activity loss was concentration dependent, highly reproducible, and formed linear functions in log-log plots. Network activity loss generally preceded morphological changes. 20% cell swelling was correlated with 50% activity loss. Cultures pretreated with the GABAA receptor antagonists bicuculline (40 mM) and picrotoxin (1 mM) lacked the initial excitation phase. This suggests that zinc-induced excitation may be mediated by interfering with GABA inhibition. Partial network protection was achieved by stopping spontaneous activity with either tetrodotoxin (200 nM) or lidocaine (250 mM). However, recovery was not complete and slow deterioration of network activity continued over 6 hrs. Removal of zinc by early medium changes showed irreversible, catastrophic network failure to develop in a concentration-dependent time window between 50% and 90% activity loss. Investigation of entry routes suggested the L-type but not N-type calcium channels to be the main entry pathway for zinc. Data are presented implicating the chloride channel to be an additional entry route.
Characterization of cDNA and Genomic Clones for a Palmitoyl-acyl Carrier Protein Thioesterase and an Osmotin-Like PR5 Protein in Gossypium Hirsutum.
Putative cotton cDNA clones and cognate genomic clones for a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE) and an osmotin-like pathogenesis-related 5 (PR5) protein have been isolated and characterized. PATE is a class B fatty acid thioesterase with specificity for saturated long-chain fatty acids such as palmitate, and is implicated as a key enzyme to be targeted for regulation of fatty acid synthesis in order to alter cotton seed oil profiles. A nearly full-length 1.7-kb cDNA clone was isolated using a hybridization probe derived from an Arabidopsis PATE cDNA clone designated TE 3-2. A 17-kb genomic segment encompassing the PATE gene was also isolated, which has six exons and five introns with high sequence identity with other FatB cDNA/gene sequences. The deduced PATE preprotein amino acid sequence of 413 residues has putative signal sequences for targeting to the chloroplast stroma. PR5 proteins called osmotins are made in response to fungal pathogen stress or osmotic stress (water deprivation or salt exposure). Osmotins may actually form pores in fungal membranes, leading to osmotic rupture and destruction of the fungal cells. A cotton osmotin-like PR5 cDNA insert of 1,052 base-pairs was isolated and shown to encode a preprotein of 242 amino acids and is predicted to be secreted to the extracellular matrix as a neutral isoform. The deduced amino acid sequence has 16 cysteine residues that are highly conserved in osmotin-like proteins and are important in stabilizing the three-dimensional structure seen in thaumatin, zeamatin, and PR5-d. The intronless cognate cotton genomic clone has two putative ethylene response elements (GCC boxes) found in other PR5 gene promoter regions, as well as several tentative promoter/enhancer elements possibly involved in spatial/temporal gene expression.
Regulation of Colony-Stimulating Factor-1 Biosynthesis
Recent studies suggest that synthesis of the Colony-stimulating factor (CSF) is a well regulated process. However, the molecular mechanisms of the signal transduction of the various inducers of CSF such as monokines and lymphokines are not well understood. Using Interleukin 1 (IL-1) stimulation of CSF-1 in the MIA PaCa-2 cell line as a model system, the involvement of G-protein has been studied. The IL-1 induction of CSF-1 synthesis can be inhibited by both Pertussis toxin and Cholera toxin, which are known to modify the Gᵢ and Gₛ proteins respectively, thus activating adenylate cyclase to release more cAMP. The toxin inactivation can be prevented by inhibitors of the ADP-ribosylation such as, benzamide and MBAMG. Addition of dibutyryl-cAMP inhibits the IL-1 induced CSF production. Both Theophylline and Forskolin which increase cAMP by inhibiting phosphodiesterase and stimulating adenylate cyclase respectively, also inhibit CSF-1 production. Results from these studies have shown that cAMP level inversely regulates the biosynthesis of CSF-1. Preincubation of MIA PaCa-2 cells with IL-1 and 5'- guanylylimidodiphosphate (GppNHp) prevents the inhibitory effect of pertussis toxin on CSF-1 production. These data are consistent with the hypothesis that IL-1 binds to its receptor and couples to Gᵢ∝ resulting in the inhibition of adenylate cyclase and reducing cAMP level. Lowering of the' cAMP level leads to the activation of CSF-1 gene expression. The activity of another inducer of CSF-1 production in this system, 12-0-tetradecanoylphorbol-13-acetate (TPA), can be abolished by 1- (5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which is a specific inhibitor of protein kinase C. However, H-7 failed to inhibit IL-1 stimulated CSF-1 production. Other known activators of protein kinase C namely, Ca²⁺ and L-α-l-oleoyl-2-acetoyl-sn- 3-glycerol (OAG), also increase CSF production. On the other hand, Indomethacin which is known to inhibit prostaglandin E (PGE), stimulates CSF-1 production in MIA PaCa-2 cells. These data suggest that different mechanisms ...
Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme
The aspartate transcarbamoylase (ATCase) was purified from Burkholderia cepacia 25416. In the course of purification, three different ATCase activities appeared namely dodecameric 550 kDa holoenzyme, and two trimeric ATCases of 140 kDa (consists of 47 kDa PyrB subunits) and 120 kDa (consists of 40 kDa PyrB subunits) each. The 120 kDa PyrB polypeptide arose by specific cleavage of the PyrB polypeptide between Ser74 and Val75 creating an active polypeptide short by 74 amino acids. Both the 40 and 47 kDa polypeptides produced active trimers. To compare the enzyme activity of these trimers, an effector assay using nucleotides was performed. The 140 kDa trimer showed inhibition while the 120 kDa polypeptide showed less inhibition. To verify the composition of the pyrBC holoenzyme complex, B. cepacia dihydroorotase (DHOase, subunit size of 45 kDa) was purified by the pMAL protein fusion and purification system and holoenzyme reconstruction was performed using purified ATCase and DHOase. Both the 140 kDa and the 120 kDa trimers could produce holoenzymes of 550 kDa and 510 kDa, respectively. The reconstructed ATCase holoenzyme from cleaved ATCase showed better reconstruction compared to that from uncleaved ATCase in the conventional ATCase activity gel assay. To characterize the relationship between pyrimidine pathway and virulence factor production, motility tests and biofilm assays were conducted using pyrC- mutant. Even though no significant difference in growth rates was observed, there were significant differences between the wild type and mutant in the production of biofilm and virulence factors. This study will help us to understand the structure and regulation of ATCase holoenzyme with DHOase, and facilitate the use of B. cepacia as an applicable bio-tool. Additionally, we can potentially pursue more efficient drug targets for B. cepacia.
Characterization of Infection Arrest Mutants of Medicago Truncatula and Genetic Mapping of Their Respective Genes.
In response to compatible rhizobia, leguminous plants develop unique plant organs, root nodules, in which rhizobia fix nitrogen into ammonia. During nodule invasion, the rhizobia gain access to newly divided cells, the nodule primordia, in the root inner cortex through plant-derived cellulose tubes called infection threads. Infection threads begin in curled root hairs and bring rhizobia into the root crossing several cell layers in the process. Ultimately the rhizobia are deposited within nodule primordium cells through a process resembling endocytosis. Plant host mechanisms underlying the formation and regulation of the invasion process are not understood. To identify and clone plant genes required for nodule invasion, recent efforts have focused on Medicago truncatula. In a collaborative effort the nodulation defect in the lin (lumpy infections) mutant was characterized. From an EMS-mutagenized population of M. truncatula, two non-allelic mutants nip (numerous infections with polyphenolics) and sli (sluggish infections) were identified with defects in nodule invasion. Infection threads were found to proliferate abnormally in the nip mutant nodules with only very rare deposition of rhizobia within plant host cells. nip nodules were found to accumulate polyphenolic compounds, indicative of a host defense response. Interestingly, nip was also found to have defective lateral root elongation suggesting that NIP has a role in both nodule and lateral root development. NIP was found to map at the upper arm of chromosome 1. In sli, infection threads were observed to bring rhizobia from infection threads to newly divided nodule primordium cells in the roots inner cortex. Polyphenolic accumulation in sli nodule/bumps was found. Lateral roots in sli were found to be clustered at the top of the root, indicating that sli like nip may be defective in lateral root development.
Cyanide Assimilation in Pseudomonas Fluorescens: Characterization of Cyanide Oxygenase as a Pterin-Dependent Multicomponent Enzyme Complex
Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated by an enzyme referred to as cyanide oxygenase (CNO), previously shown to require components in both high (H) (>30 kDa) and low (L) (<10 kDa) molecular weight cell fractions. In this study, tetrahydrobiopterin (H4biopterin) was identified as a cofactor in fraction L, thus making CNO appear as a pterin- dependent hydroxylase. CNO was purified 150-fold (specific activity 0.9 U/mg) and quantitatively converted cyanide to formate and ammonia as reaction products. When coupled with formate dehydrogenase, the complete enzymatic system for cyanide oxidation to carbon dioxide and ammonia was reconstituted. CNO was found to be an aggregate of known enzymes that included NADH oxidase (Nox), NADH peroxidase (Npx), cyanide dihydratase (CynD) and carbonic anhydrase (CA). A complex multi-step reaction mechanism is proposed in which Nox generates hydrogen peroxide which in turn is utilized by Npx to catalyze the oxygenation of cyanide to formamide accompanied by the consumption of one and two molar equivalents of oxygen and NADH, respectively. The further hydrolysis of formamide to ammonia and formate is thought to be mediated by CynD. The role of H4biopterin and of the enzyme CA in the proposed process remains unclear, but the involvement of each in reactive oxygen and radical chemistry is consistent with the proposed formation of such species in the catalytic process. H4biopterin may additionally serve as a protein stabilizing agent along with a protein co-purifying with CynD identified as elongation factor Tu, a known chaperone. At least two of the CNO components (Nox and CynD) are complex oligomeric proteins whose apparent association with Npx and CA appears to be favored in bacterial cells induced with cyanide allowing their purification in toto as a ...
Influence of Cholesterol Import on Aspergillus fumigatus Growth and Antifungal Suscepibility
Invasive pulmonary aspergillosis is a life-threatening fungal infection commonly observed in immunocompromised patients and has a mortality rate approaching 100% once the disease is disseminated. Aspergillus fumigatus is the most common pathogen. Early diagnosis improves the prognosis but is very difficult since most signs and symptoms are nonspecific. Antifungal therapy, usually based on sterol biosynthesis inhibitors, is also of limited efficacy. In my attempts to discover a diagnostic sterol marker for aspergillosis, I observed that A. fumigatus incorporates large amounts of cholesterol from serum-containing medium. This observation suggested the hypothesis that exogenous cholesterol from the host can be imported by A. fumigatus and used as a substitute for ergosterol in the cell membrane. This proposed mechanism would reduce the efficacy of antifungal drugs that act as sterol biosynthesis inhibitors. Experiments to test this hypothesis were designed to determine the effects of serum-free and serum-containing medium on growth of A. fumigatus in the presence and absence of azole antifungal agents. The results showed a marked increase in growth in the presence of human serum. Cultures in media containing cholesterol but no serum also showed enhanced growth, a result indicating that a non-cholesterol component of serum is not primarily responsible for the increased growth. However, sterol analysis of A. fumigatus cultured in the absence of inhibitors showed little or no change in ergosterol levels. This result suggested that the imported cholesterol was not being used as membrane sterol. However, in parallel experiments using Itraconazole™, an antifungal agent that attenuates sterol biosynthesis by inhibiting the sterol 14a-demethylase (ERG11), ergosterol levels decreased with increasing doses of inhibitor. Moreover, serum-containing medium partially rescued A. fumigatus from the effects of Itraconazole™, and a similar rescue effect was observed with serum-free media containing cholesterol. From the preceding results, it can be concluded that human serum enhances A. ...
Regulation of pyrimidine biosynthesis and virulence factor production in wild type, Pyr- and Crc- mutants in Pseudomonas aeruginosa.
Previous research in our laboratory established that pyrB, pyrC or pyrD knock-out mutants in Pseudomonas aeruginosa required pyrimidines for growth. Each mutant was also discovered to be defective in the production of virulence factors. Moreover, the addition of exogenous uracil did not restore the mutant to wild type virulence levels. In an earlier study using non-pathogenic P. putida, mutants blocked in one of the first three enzymes of the pyrimidine pathway produced no pyoverdine pigment while mutants blocked in the fourth, fifth or sixth steps produced copious quantities of pigment, just like wild type P. putida. The present study explored the correlation between pyrimidine auxotrophy and pigment production in P. aeruginosa. Since the pigment pyoverdine is a siderophore it may also be considered a virulence factor. Other virulence factors tested included casein protease, elastase, hemolysin, swimming, swarming and twitching motilities, and iron binding capacity. In all cases, these virulence factors were significantly decreased in the pyrB, pyrC or pyrD mutants and even in the presence of uracil did not attain wild type levels. In order to complete this comprehensive study, pyrimidine mutants blocked in the fifth (pyrE) and sixth (pyrF) steps of the biosynthetic pathway were examined in P. aeruginosa. A third mutant, crc, was also studied because of its location within 80 base pairs of the pyrE gene on the P. aeruginosa chromosome and because of its importance for carbon source utilization. Production of the virulence factors listed above showed a significant decrease in the three mutant strains used in this study when compared with the wild type. This finding may be exploited for novel chemotherapy strategies for ameliorating P. aeruginosa infections in cystic fibrosis patients.
Development of a Real-time Pcr Assay for the Detection of Campylobacter Jejuni and Campylobacter Coli.
Campylobacter organisms are the most commonly reported bacterial causes of foodborne infection in the world, with Campylobacter jejuni and Campylobacter coli responsible for over 99% of reported infections. Traditionally, Campylobacter species detection is an arduous process, requiring a special incubation environment as well as specific growth media for an extended growth period. The development of a rapid and reliable diagnostic tool for the detection of Campylobacter species would be a valuable aid to the medical diagnostic decision process, especially to rule out Campylobacter infection during the enteric pre-surgical time period. Improved patient outcomes would result if this rapid assay could reduce the number of enteric surgeries. Assays performed during this dissertation project have demonstrated that both SYBR® green and hydrolysis probe assays targeting an 84 nucleotide portion of cadF, a fibronectin-binding gene of Campylobacter jejuni and Campylobacter coli, were able to detect from 101 to 108 copies of organism from stool specimens, did not detect nonspecific targets, and exhibited a coefficient of variation (CV) of 1.1% or less. Analytical validation of sensitivity, specificity and precision, successfully performed in these studies, warrants additional clinical validation of these assays.
Genetic and Cellular Analysis of Anoxia-Induced Cell Cycle Arrest in Caenorhabditis elegans
The soil-nematode Caenorhabditis elegans survives oxygen deprivation (anoxia < 0.001 kPa of O2, 0% O2) by entering into a state of suspended animation during which cell cycle progression at interphase, prophase and metaphase stage of mitosis is arrested. I conducted cell biological characterization of embryos exposed to various anoxia exposure times, to demonstrate the requirement and functional role of spindle checkpoint gene san-1 during brief anoxia exposure. I conducted a synthetic lethal screen, which has identified genetic interactions between san-1, other spindle checkpoint genes, and the kinetochore gene hcp-1. Furthermore, I investigated the genetic and cellular mechanisms involved in anoxia-induced prophase arrest, a hallmark of which includes chromosomes docked at the nuclear membrane. First, I conducted in vivo analysis of embryos carried inside the uterus of an adult and exposed to anoxic conditions. These studies demonstrated that anoxia exposure prevents nuclear envelope breakdown (NEBD) in prophase blastomeres. Second, I exposed C. elegans embryos to other conditions of mitotic stress such as microtubule depolymerizing agent nocodazole and mitochondrial inhibitor sodium azide. Results demonstrate that NEBD and chromosome docking are independent of microtubule function. Additionally, unlike anoxia, exposure to sodium azide causes chromosome docking in prophase blastomeres but severely affects embryonic viability. Finally, to identify the genetic mechanism(s) of anoxia-induced prophase arrest, I conducted extensive RNA interference (RNAi) screen of a subset of kinetochore and inner nuclear membrane genes. RNAi analysis has identified the novel role of 2 nucleoporins in anoxia-induced prophase arrest.
Expression analysis of the fatty acid desaturase 2-4 and 2-3 genes from Gossypium hirsutum in transformed yeast cells and transgenic Arabidopsis plants.
Fatty acid desaturase 2 (FAD2) enzymes are phosphatidylcholine desaturases occurring as integral membrane proteins in the endoplasmic reticulum membrane and convert monounsaturated oleic acid into polyunsaturated linoleic acid. The major objective of this research was to study the expression and function of two cotton FAD2 genes (the FAD2-3 and FAD2-4 genes) and their possible role in plant sensitivity to environmental stress, since plants may increase the polyunsaturated phospholipids in membranes under environmental stress events, such as low temperature and osmotic stress. Two FAD2 cDNA clones corresponding to the two FAD2 genes have been isolated from a cotton cDNA library, indicating both genes are truly expressed in cotton. Model yeast cells transformed with two cotton FAD2 genes were used to study the chilling sensitivity, ethanol tolerance, and growth rate of yeast cells. The expression patterns of the two FAD2 genes were analyzed by reverse transcription polymerase chain reactions (RT-PCR) and Western blot analyses in cotton plants under different treatment conditions. The coding regions of both FAD2 genes were inserted downstream from the CaMV 35S promoter in the pMDC gateway binary vector system. Five different FAD2/pMDC constructs were transformed into the Arabidopsis fad2 knockout mutant background, and multiple potential transgenic Arabidopsis plant lines harboring the cotton FAD2 genes were generated. The cotton FAD2 genes were amplified by the polymerase chain reaction (PCR) from the genomic DNAs isolated from the transgenic Arabidopsis T1 plant lines. Complementation of the putative transgenic Arabidopsis plants with the two cotton FAD2 genes was demonstrated by gas chromatography analyses of the fatty acid profiles of leaf tissues. The cellular localization of cotton FAD2-4 polypeptides with N-terminal green fluorescence protein (GFP) was visualized by confocal fluorescence microscopy. The phenotype of transgenic Arabidopsis plants transformed with the cotton FAD2-4 gene was compared to Arabidopsis knockout fad2 mutant plants and wild ...
Stress Response by Alternative σ-factor, RpoH, and Analysis of Posttranslational Modification of the Heat Shock Protein, Dnak, in Escherichia coli
Bacteria have developed specialized responses that involve the expression of particular genes present in a given regulon. Sigma factors provide regulatory mechanisms to respond to stress by acting as transcriptional initiation factors. This work focuses on σ32 during oxidative stress in Escherichia coli. The differential response of key heat shock (HS) genes was investigated during HS and oxidative stress using qPCR techniques. While groEL and dnaJ experienced increases in transcriptional response to H2O2 (10 mM), HS (42°C), and paraquat (50 mM) exposure, the abundance of dnaK over the co-chaperones was apparent. It was hypothesized that DnaK undergoes oxidative modification by reactive carbonyls at its Lys-rich C-terminus, accounting for the differential response during oxidative stress. A σ32-mediated β-galactosidase reporter was devised to detect the activity of wild-type DnaK and DnaKV634X modified to lack the Lys-rich C-terminus. Under unstressed conditions and HS, σ32 was bound at the same rate in both strains. When subjected to H2O2, the WT DnaK strain produced significantly higher β-galactosidase than DnaKV634X (one-tailed Student’s t test p=0.000002, α=0.05) and approached the same level of output as the lacZ positive control. The β-galactosidase assay indicates that DnaK undergoes Lys modification in the WT strain, preventing the protein from binding σ32, increasing the activity of σ32, and resulting in higher β-galactosidase activity than the DnaKV634X strain. In the DnaKV634X strain DnaK continues to bind σ32 so that σ32 could not promote the production of β-galactosidase. These findings demonstrate how DnaK is oxidatively modified, hindering the interaction with σ32 in manner distinct from HS.
Investigation of Strategies for Improving STR Typing of Degraded and Low Copy DNA from Human Skeletal Remains and Bloodstains
Forensic STR analysis is limited by the quality and quantity of DNA. Significant damage or alteration to the molecular structure of DNA by depurination, crosslinking, base modification, and strand breakage can impact typing success. Two methods that could potentially improve STR typing of challenged samples were explored: an in vitro DNA repair assay (PreCR™ Repair Mix) and whole genome amplification. Results with the repair assay showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally-damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR™ assay. The data suggest that the use of PreCR™ in casework should be considered with caution due to the assay’s varied results. As an alternative to repair, whole genome amplification (WGA) was pursued. The DOP-PCR method was selected for WGA because of initial primer design and greater efficacy for amplifying degraded samples. Several modifications of the original DOP-PCR primer were evaluated. These modifications allowed for an overall more robust amplification of damaged DNA from both contemporary and historical skeletal remains compared with that obtained by standard DNA typing and a previously described DOP-PCR method. These new DOP-PCR primers show promise for WGA of degraded DNA.