UNT Libraries - Browse

ABOUT BROWSE FEED

Physical-Layer Network Coding for MIMO Systems

Description: The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
Date: May 2011
Creator: Xu, Ning

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed constructions are practical to implement and have reasonable costs, while providing strong privacy assurances.
Date: May 2011
Creator: Vishwanathan, Roopa

Process-Voltage-Temperature Aware Nanoscale Circuit Optimization

Description: Embedded systems which are targeted towards portable applications are required to have low power consumption because such portable devices are typically powered by batteries. During the memory accesses of such battery operated portable systems, including laptops, cell phones and other devices, a significant amount of power or energy is consumed which significantly affects the battery life. Therefore, efficient and leakage power saving cache designs are needed for longer operation of battery powered applications. Design engineers have limited control over many design parameters of the circuit and hence face many chal-lenges due to inherent process technology variations, particularly on static random access memory (SRAM) circuit design. As CMOS process technologies scale down deeper into the nanometer regime, the push for high performance and reliable systems becomes even more challenging. As a result, developing low-power designs while maintaining better performance of the circuit becomes a very difficult task. Furthermore, a major need for accurate analysis and optimization of various forms of total power dissipation and performance in nanoscale CMOS technologies, particularly in SRAMs, is another critical issue to be considered. This dissertation proposes power-leakage and static noise margin (SNM) analysis and methodologies to achieve optimized static random access memories (SRAMs). Alternate topologies of SRAMs, mainly a 7-transistor SRAM, are taken as a case study throughout this dissertation. The optimized cache designs are process-voltage-temperature (PVT) tolerant and consider individual cells as well as memory arrays.
Date: December 2010
Creator: Thakral, Garima

Joint Schemes for Physical Layer Security and Error Correction

Description: The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A cipher-based cryptosystem is also presented in this research. The complexity of this scheme is reduced compared to conventional schemes. The securities of the ciphers are analyzed against known-plaintext and chosen-plaintext attacks and are found to be secure. Randomization test was also conducted on these schemes and the results are presented. For the proof of concept, the schemes were implemented in software and hardware and these shows a reduction in hardware usage compared to conventional schemes. As a result, joint schemes for error correction and security provide security to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. In this physical layer security approach, the properties of powerful error correcting codes are exploited to deliver reliability to the intended parties, high security against eavesdroppers and efficiency in communication system. The notion of a highly secure and reliable physical layer has the potential to significantly change how communication system designers and users think of the physical layer since the error control codes employed in this work will have the dual roles of both reliability and security.
Date: August 2011
Creator: Adamo, Oluwayomi Bamidele

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I demonstrate the performance of the developed algorithm on several scene analysis tasks, including object tracking, video stabilization, medical video segmentation and scene classification.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2011
Creator: Shen, Yao

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

Description: This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus allowing for the automatic generation of mapping links between ontologies. The conclusion of this thesis is that the "knowledge access heuristic" is valuable and that a ranking process based on a large encyclopedic resource can form the basis for an extendable general purpose mechanism capable of identifying relevant concepts by association, which in turn can be effectively utilized for enumeration and comparison at a semantic level.
Date: December 2009
Creator: Coursey, Kino High

Inferring Social and Internal Context Using a Mobile Phone

Description: This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the mobile social grouping framework, the significant role of social ties in communication patterns is revealed. In internal context-aware computing, two studies are conducted where the notions of internal context are intention and situation. For intentional context, the goal is to sense the intention of the user in placing calls. A model is thus presented for predicting future calls envisaged as a call predicted list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the callers within the next hour(s), which is useful for scheduling and daily planning. As an outgoing call predictor, CPL is generated as a list of numbers/contacts that are the most likely to be dialed when the user attempts to make an outgoing call (e.g., by flipping open or unlocking the phone). This feature helps save time from having to search through a lengthy phone book. For situational context, a model is presented for sensing the user's situation (e.g., in a library, driving a car, etc.) based on embedded sensors. The sensed context is then used to switch the phone into a suitable ...
Date: December 2009
Creator: Phithakkitnukoon, Santi

Social Network Simulation and Mining Social Media to Advance Epidemiology

Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Date: August 2009
Creator: Corley, Courtney David

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Description: New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has been demonstrated through exhaustive simulations. Apart from these methodologies, the application of dual-oxide and dual-threshold techniques at circuit level in order to minimize power and leakage is also explored.
Date: May 2009
Creator: Ghai, Dhruva V.

The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

Description: The fight against epidemics/pandemics is one of man versus nature. Technological advances have not only improved existing methods for monitoring and controlling disease outbreaks, but have also provided new means for investigation, such as through modeling and simulation. This dissertation explores the relationship between social structure and disease dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but related, studies are presented. The first involves measuring the severity of outbreaks as social network parameters are altered. The second study investigates the efficacy of various vaccination policies based on social structure. Three disease-related centrality measures are introduced, contact, transmission, and spread centrality, which are related to previously established centrality measures degree, betweenness, and closeness, respectively. The results of experiments presented in this dissertation indicate that reducing the neighborhood size along with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination strategies can effectively reduce these parameters. Additionally, vaccination policies that target individuals with high centrality are generally shown to be slightly more effective than a random vaccination policy. These results combined with past and future studies will assist public health officials in their effort to minimize the effects of inevitable disease epidemics/pandemics.
Date: December 2010
Creator: Johnson, Tina V.

Procedural Generation of Content for Online Role Playing Games

Description: Video game players demand a volume of content far in excess of the ability of game designers to create it. For example, a single quest might take a week to develop and test, which means that companies such as Blizzard are spending millions of dollars each month on new content for their games. As a result, both players and developers are frustrated with the inability to meet the demand for new content. By generating content on-demand, it is possible to create custom content for each player based on player preferences. It is also possible to make use of the current world state during generation, something which cannot be done with current techniques. Using developers to create rules and assets for a content generator instead of creating content directly will lower development costs as well as reduce the development time for new game content to seconds rather than days. This work is part of the field of computational creativity, and involves the use of computers to create aesthetically pleasing game content, such as terrain, characters, and quests. I demonstrate agent-based terrain generation, and economic modeling of game spaces. I also demonstrate the autonomous generation of quests for online role playing games, and the ability to play these quests using an emulated Everquest server.
Date: August 2014
Creator: Doran, Jonathon

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Description: The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. The proposed methodologies combine Kriging metamodels with selected algorithms for ultra-fast layout optimization. The selected algorithms explored are: Gravitational Search Algorithm (GSA), Simulated Annealing Optimization (SAO), and Ant Colony Optimization (ACO). Experimental results demonstrate that the proposed Kriging metamodel based methodologies can perform the optimizations with minimal computational burden compared to traditional (SPICE-based) design flows.
Date: May 2014
Creator: Okobiah, Oghenekarho

Extrapolating Subjectivity Research to Other Languages

Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the implementation of techniques on par with those developed for English, and by applying methods that are lighter in the usage of text processing infrastructure, we are able to conduct multilingual subjectivity research in these languages as well. Since my aim is also to minimize the amount of manual work required to develop lexica or corpora in these languages, the techniques proposed employ a lever approach, where English often acts as the donor language (the fulcrum in a lever) and allows through a relatively minimal amount of effort to establish preliminary subjectivity research in a target language.
Date: May 2013
Creator: Banea, Carmen

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP design. The PLL parasitic-aware optimization achieves a 10× speedup and a 147 µW power reduction. Thus the experimental results validate the effectiveness of the proposed solution.
Date: May 2013
Creator: Zheng, Geng

Trajectory Analytics

Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ground-truth set obtained using the crowdsourcing technique. The results show that the relationships between a pair of trajectories can signify the low-level multi-agent activities.
Date: May 2015
Creator: Santiteerakul, Wasana

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner

Incremental Learning with Large Datasets

Description: This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from UCI and endoscopy videos, it is evident that the GISVM achieved satisfactory classifiers that closely model the underlying data distribution. GISVM improves the performance in sensitivity in the incremental steps, significantly reduced the demand for memory space, and demonstrates the ability of recovery from temporary performance degradation.
Date: May 2012
Creator: Giritharan, Balathasan

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Description: Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the meaning of the sentence does not change after the substitutions. This solution has manifested itself in the SemEval 2007 task of lexical substitution and the more recent SemEval 2010 task of cross-lingual lexical substitution (which I helped organize), where given an English context and a target word within that context, the systems are required to provide between one and ten appropriate substitutes (in English) or translations (in Spanish) for the target word. In this dissertation, I present a comprehensive overview of state-of-the-art research and describe new experiments to tackle the tasks of lexical substitution and cross-lingual lexical substitution. In particular ...
Date: May 2013
Creator: Sinha, Ravi Som

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Description: In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Date: August 2012
Creator: Mohler, Michael A.G.

A New Look at Retargetable Compilers

Description: Consumers demand new and innovative personal computing devices every 2 years when their cellular phone service contracts are renewed. Yet, a 2 year development cycle for the concurrent development of both hardware and software is nearly impossible. As more components and features are added to the devices, maintaining this 2 year cycle with current tools will become commensurately harder. This dissertation delves into the feasibility of simplifying the development of such systems by employing heterogeneous systems on a chip in conjunction with a retargetable compiler such as the hybrid computer retargetable compiler (Hy-C). An example of a simple architecture description of sufficient detail for use with a retargetable compiler like Hy-C is provided. As a software engineer with 30 years of experience, I have witnessed numerous system failures. A plethora of software development paradigms and tools have been employed to prevent software errors, but none have been completely successful. Much discussion centers on software development in the military contracting market, as that is my background. The dissertation reviews those tools, as well as some existing retargetable compilers, in an attempt to determine how those errors occurred and how a system like Hy-C could assist in reducing future software errors. In the end, the potential for a simple retargetable solution like Hy-C is shown to be very simple, yet powerful enough to provide a very capable product in a very fast-growing market.
Date: December 2014
Creator: Burke, Patrick William

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless of the intention type, identifying it, evaluating it, and taking actions by using it to prevent any malicious intentions are the main goals of this research. The following four different security vulnerabilities are identified in this research: Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, and compromised authentication. These four vulnerabilities are solved by detecting malware applications, identifying malicious users in a social network, enhancing the encryption system of a phone communication, and identifying user activities using electroencephalogram (EEG) for authentication. Each of these solutions are constructed using the idea of intention identification. Furthermore, many of ...
Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed

Trajectories As a Unifying Cross Domain Feature for Surveillance Systems

Description: Manual video analysis is apparently a tedious task. An efficient solution is of highly importance to automate the process and to assist operators. A major goal of video analysis is understanding and recognizing human activities captured by surveillance cameras, a very challenging problem; the activities can be either individual or interactional among multiple objects. It involves extraction of relevant spatial and temporal information from visual images. Most video analytics systems are constrained by specific environmental situations. Different domains may require different specific knowledge to express characteristics of interesting events. Spatial-temporal trajectories have been utilized to capture motion characteristics of activities. The focus of this dissertation is on how trajectories are utilized in assist in developing video analytic system in the context of surveillance. The research as reported in this dissertation begins real-time highway traffic monitoring and dynamic traffic pattern analysis and in the end generalize the knowledge to event and activity analysis in a broader context. The main contributions are: the use of the graph-theoretic dominant set approach to the classification of traffic trajectories; the ability to first partition the trajectory clusters using entry and exit point awareness to significantly improve the clustering effectiveness and to reduce the computational time and complexity in the on-line processing of new trajectories; A novel tracking method that uses the extended 3-D Hungarian algorithm with a Kalman filter to preserve the smoothness of motion; a novel camera calibration method to determine the second vanishing point with no operator assistance; and a logic reasoning framework together with a new set of context free LLEs which could be utilized across different domains. Additional efforts have been made for three comprehensive surveillance systems together with main contributions mentioned above.
Date: December 2014
Creator: Wan, Yiwen

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting multimodal sentiment analysis system is shown to significantly outperform the use of language alone. Using this system, we were able to predict the sentiment expressed in video reviews and also the sentiment experienced by viewers while exposed to emotionally loaded content. Second, the thesis provides evidence of the portability of the developed strategies to other affect recognition problems. We provided support for this by studying the deception detection problem. Third, this thesis contributes several multimodal datasets that will enable further research in sentiment and deception detection.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Pérez-Rosas, Verónica

Indoor Localization Using Magnetic Fields

Description: Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation ...
Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar