UNT Libraries - 90 Matching Results

Search Results

Implementation of an Unmanned Aerial Vehicle for New Generation Peterbilt Trucks
As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.
AirSniffer: A Smartphone-Based Sensor Module for Personal Micro-Climate Monitoring
Environmental factors can have a significant impact on an individual's health and well-being, and a primary characteristic of environments is air quality. Air sensing equipment is available to the public, but it is often expensive,stationary, or unusable for persons without technical expertise. The goal of this project is to develop an inexpensive and portable sensor module for public use. The system is capable of measuring temperature in Celsius and Fahrenheit, heat index, relative humidity, and carbon dioxide concentration. The sensor module, referred to as the "sniffer," consists of a printed circuit board that interconnects a carbon dioxide sensor, a temperature/humidity sensor, an Arduino microcontroller, and a Bluetooth module. The sniffer is small enough to be worn as a pendant or a belt attachment, and it is rugged enough to consistently collect and transmit data to a user's smartphone throughout their workday. The accompanying smartphone app uses Bluetooth and GPS hardware to collect data and affix samples with a time stamp and GPS coordinates. The accumulated sensor data is saved to a file on the user's phone, which is then examined on a standard computer.
Measurement and Analysis of Indoor Air Quality Conditions
More than 80% of the people in urban regions and about 98% of cities in low and middle income countries have poor air quality according to the World Health Organization. People living in such environment suffer from many disorders like a headache, shortness of breath or even the worst diseases like lung cancer, asthma etc. The main objective of the thesis is to create awareness about the air quality and the factors that are causing air pollution to the people which is really important and provide tools at their convenience to measure and analyze the air quality. Taking real time air quality scenarios, various experiments were made using efficient sensors to study both the indoor and outdoor air quality. These experimental results will eventually help people to understand air quality better. An outdoor air quality data measurement system is developed in this research using Python programming to provide people an opportunity to retrieve and manage the air quality data and get the concentrations of the leading pollutants. The entire designing of the program is made to run with the help of a graphical user interface tool for the user, as user convenience is considered as one of the objectives of the thesis. A graphical user interface is made for the user convenience to visualize graphically the data from the database. The designed system is tested and used for the measurement and analysis of the outdoor air quality. This data will be available in the database so it can be used for analyzing the air quality data for several days or months or years. Using the GrayWolf system and the designed outdoor air quality data measurement system, both the indoor and outdoor air quality was measured to analyze and correlate.
Wireless Signal Conditioning
This thesis presents a new approach to extend and reduce the transmission range in wireless systems. Conditioning is defined as purposeful electromagnetic interference that affects a wireless signal as it propagates through the air. This interference can be used constructively to enhance a signal and increase its energy, or destructively to reduce energy. The constraints and limitations of the technology are described as a system model, and a flow chart is used to describe the circuit process. Remaining theoretical in nature, practical circuit implementations are foregone in the interest of elementary simulations depicting the interactions of modulated signals as they experience phase mismatch. Amplitude modulation and frequency modulation are explored with using both positive and negative conditioning, and conclusions to whether one is more suitable than the other are made.
The Modeling and Simulation of EV3 Motor Dynamics
This paper describes a procedure to find the transfer function for the Lego Mindstorms Ev3. Lego Mindstorms Ev3 can serve as the platform for a system modeling and a controller design course. It is economical and accessible. It is also very compatible with Matlab and Simulink. This platform can be used for concepts of modeling, feedback, and controller design. The main approach in this work focuses on the closed loop instead of open loop. Although this approach turns the problem into a more complicated puzzle, it reveals more details. In this work, different techniques have been used, such as time domain, root locus, and least square estimation. Different tools have also been utilized such as Matlab SISO tool, the Matlab System Identification tool, and Simulink. These methods and implementations assisted to acquire different types of transfer functions for the system. By simulating the transfer functions and comparing them with experimental studies, the matching scores were calculated to decide on the best transfer function. Finding the finest transfer function for this gadget enables us to prepare diverse practical undergraduate and graduate curricula.
Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach
In the past few years, the study of electrical activity in the brain and its interactions with the body has become popular among researchers. One of the hottest topics related to brain activity is the epileptic seizure prediction. Currently, there are several techniques on how to predict a seizure; however, most of the techniques found in research papers are just mathematical models and not system implementations. The seizure prediction approach proposed in this thesis paper is achieved using the EMOTIV Epoc+ headset, MATLAB, and LabVIEW as the analog and digital signal processing devices. In addition, this thesis project incorporates the use of the Hilbert Huang transform (HHT) method to obtain intrinsic mode functions (IMF) and instantaneous frequency components of the transform. From the IMFs, features as variation coefficient (VC) and fluctuation indexes (FI) are extracted to feed a support vector machine that classifies the EEG data as pre-ictal and non-ictal EEGs. Outstanding patterns in non-ictal and pre-ictal are observed and demonstrated by significant differences between both types of EEG signals. In other words, a classification of EEG signals according to a category can be achieved proving that an epileptic seizure prediction technology has a future in engineering and biotechnology fields.
A 018μm Cmos Transmitter for Ecg Signals
Electrocardiography (ECG) signal transmitter is the device used to transmit the electrical signals of the heart to the remote machine. These electrical signals are ECG signals caused due to electrical activities in the heart. ECG signals have very low amplitude and frequency; hence amplification of the signals is needed to strengthen the signal. Conversion of the amplified signal into digital information and transmitting that information without losing any data is the key. This information is further used in monitoring the heart.
Quantitative Correlation Analysis of Motor and Dysphonia Features of Parkinsons Disease
The research reported here deals with the early characterization of Parkinson’s disease (PD), the second most common degenerative disease of the human motor system after Alzheimer’s. PD results from the death of dopaminergic neurons in the substantia nigra region of the brain. Its occurrence is highly correlated with the aging population whose numbers increase with the healthcare benefits of a longer life. Observation of motor control symptoms associated with PD, such as gait and speech analysis, is most often used to evaluate, detect, and diagnose PD. Since speech and some delicate motor functions have provided early detection signs of PD, reliable analysis of these features is a promising objective diagnostic technique for early intervention with any remedial measures. We implement and study here three PD diagnostic methods and their correlation between each other’s results and with the motor functions in subjects diagnosed with and without PD. One initial test documented well in the literature deals with feature analysis of voice during phonation to determine dysphonia measures. Features of the motor function of two fingers were extracted in tests titled “Motor function of alternating finger tapping on a computer keyboard” and “Motor function of the index and thumb finger tapping with an accelerometer”, that we objectively scripted. The voice dysphonia measures were extracted using various software packages like PRAAT, Wavesurfer, and Matlab. In the initial test, several robust feature selection algorithms were used to obtain an optimally selected subset of features. We were able to program distance classifiers, support vector machine (SVM), and hierarchical clustering discrimination approaches for the dichotomous identification of non-PD control subjects and people with Parkinson’s (PWP). Validation tests were implemented to verify the accuracy of the classification processes. We determined the extent of functional agreement between voice and motor functions by correlating test results.
Design of Multi Band Microwave Devices Using Coupled Line Transmission Lines
Multi band technology helps in getting multiple operating frequencies using a single microwave device. This thesis presents the design of dual and tri band microwave devices using coupled transmission line structures. Chapter 2 presents the design of a novel dual band transmission line structure using coupled lines. In chapter 3, Design of a dual band branch line coupler and a dual band Wilkinson power divider are proposed using the novel dual band transmission line structure presented in the previous chapter. In chapter 4, Design of a tri band transmission line structure by extending the dual band structure is presented. The Conclusion and future work are presented in chapter 5.
Airbourne WiFi Networks Through Directional Antenna: An Experimental Study
In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. The WiFi network can be connected to the Internet to extend WiFi access to areas where WiFi and other Internet infrastructures are not available. In order to establish a local area network to propagate WIFI service, directional antennas and wireless routers are used to create it. Due to unstable working condition on the flying drones, a precise heading turning stage is designed to maintain the two directional antennas facing to each other. Even if external interferences change the heading of the drones, the stages will automatically rotate back to where it should be to offset the bias. Also, to maintain the same flying altitude, a ground controller is designed to measure the height of the drones so that the directional antennas can communicate to each other successfully. To verify the design of the whole system, quite a few field experiments were performed. Experiments results indicates the design is reliable, viable and successful. Especially at disaster areas, it’ll help people a lot.
Dual-Band Quarter Wavelength and Half Wavelength Microstrip Transmission Line Design
The thesis represents the design for dual-band quarter wavelength and half wavelength microstrip transmission line. Chapter 2 proposed the design of a novel dual-band asymmetric pi-shaped short-circuited quarter wavelength microstrip transmission line working at frequencies 1GHz and 1.55 GHz for 50Ω transmission line and at frequencies 1GHz and 1.43GHz for 60Ω transmission line. Chapter 3 proposed the design of a novel dual-band quarter wavelength microstrip transmission line with asymmetrically allocated open stubs and short-circuited stubs working at frequencies 1GHz and 1.32GHz. Chapter 4 proposed the design of dual-band pi-shaped open stub half wavelength microstrip transmission line working at frequencies 1GHz and 2.07GHz. Numerical simulations are performed both in HyperLynx 3D EM and in circuit simulator ADS for all of the proposed designs to measure the return loss (S11) and insertion loss (S12) in dB and phase response for S12 in degree.
Practical Robust MIMO OFDM Communication System for High-Speed Mobile Communication
This thesis presents the design of a communication system (PRCS) which improves on all aspects of the current state of the art 4G communication system Long Term Evolution (LTE) including peak to average power ratio (PAPR), data reliability, spectral efficiency and complexity using the most recent state of the art research in the field combined with novel implementations. This research is relevant and important to the field of electrical and communication engineering because it provides benefits to consumers in the form of more reliable data with higher speeds as well as a reduced burden on hardware original equipment manufacturers (OEMs). The results presented herein show up to a 3 dB reduction in PAPR, less than 10-5 bit errors at 7.5 dB signal to noise ratio (SNR) using 4QAM, up to 3 times increased throughput in the uplink mode and 10 times reduced channel coding complexity.
Design of Frequency Output Pressure Transducer
Piezoelectricity crystal is used in different area in industry, such as downhole oil, gas industry, and ballistics. The piezoelectricity crystals are able to create electric fields due to mechanical deformation called the direct piezoelectric effect, or create mechanical deformation due to the effect of electric field called the indirect piezoelectric effect. In this thesis, piezoelectricity effect is the core part. There are 4 parts in the frequency output pressure transducer: two crystal oscillators, phase-locked loop (PLL), mixer, frequency counter. Crystal oscillator is used to activate the piezoelectricity crystal which is made from quartz. The resonance frequency of the piezoelectricity crystal will be increased with the higher pressure applied. The signal of the resonance frequency will be transmitted to the PLL. The function of the PLL is detect the frequency change in the input signal and makes the output of the PLL has the same frequency and same phase with the input signal. The output of the PLL will be transmitted to a Mixer. The mixer has two inputs and one output. One input signal is from the pressure crystal oscillator and another one is from the reference crystal oscillator. The frequency difference of the two signal will transmitted to the frequency counter from the output of the mixer. Thus, the frequency output pressure transducer with a frequency counter is a portable device which is able to measure the pressure without oscilloscope or computer.
Design fully-integrated dual-band two-stage class-E CMOS PA
In retrospect we can see that from the last century, wireless electronic technology has been in a rapid state of development. With the popularity of wireless communication, the power amplifier demand is rising. In general, magnitude, maximum noise figure, minimum noise figure, efficiency, and output power are important indicators of the amplifier. The IC industry is exploring how to reduce the additional cost and improve the high-frequency performance. Therefore, designing a strong adaptability and high cost performance of the PA has become a priority. As these technologies advance, the power amplifiers need to have better integration, lower cost, and lower power dissipation. Also, some special requirements are being asked in some areas, such as multi-mode and multi-band. In general, people have to use several power amplifiers parallel to frame a multifunction chip. Each of them working at different frequencies of interest has to have separate matching network, design, and area; also, the diversity amplifier prices will increase with the number of amplifiers, and its cost is also changed. In this thesis, because Class E power amplifier has lower power dissipation, 100% ideal efficiency, simple circuit structure, and strong applicability, the Class E is used as power amplifier in main stage. Moreover, in order to decrease input power and increase output power, the class A power amplifier is used as driver stage. It can use very small amount of power to provide a larger power. Moreover, we use a switched variable inductor and capacitor to constitute a dual band matching network which can let the PA work at more than one frequency. In fact, we design a Class A PA which is as a driver stage. Then, when we support 1 dBm input power, the driver stage can have 8 dBm output power. Also the output will be the input power ...
A Preliminary Controller Design for Drone Carried Directional Communication System
In this thesis, we conduct a preliminary study on the controller design for directional antenna devices carried by drones. The goal of the control system is to ensure the best alignment between two directional antennas so as to enhance the performance of air-to-air communication between the drones. The control system at the current stage relies on the information received from GPS devices. The control system includes two loops: velocity loop and position loop to suppress wind disturbances and to assure the alignment of two directional antennae. The simulation and animation of directional antennae alignment control for two-randomly moving drones was developed using SIMULINK. To facilitate RSSI-based antenna alignment control to be conducted in the future work, a study on initial scanning techniques is also included at the end of this thesis.
Modeling and Control of a Motor System Using the Lego EV3 Robot
In this thesis, I present my work on the modeling and control of a motor system using the Lego EV3 robot. The overall goal is to apply introductory systems and controls engineering techniques for estimation and design to a real-world system. First I detail the setup of materials used in this research: the hardware used was the Lego EV3 robot; the software used was the Student 2014 version of Simulink; a wireless network was used to communicate between them using a Netgear WNA1100 wifi dongle. Next I explain the approaches used to model the robot’s motor system: from a description of the basic system components, to data collection through experimentation with a proportionally controlled feedback loop, to parameter estimation (through time-domain specification relationships, Matlab’s curve-fitting toolbox, and a formal least-squares parameter estimation), to the discovery of the effects of frictional disturbance and saturation, and finally to the selection and verification of the final model through comparisons of simulated step responses of the estimated models to the actual time response of the motor system. Next I explore three different types of controllers for use within the motor system: a proportional controller, a lead compensator, and a PID controller. I catalogue the design and performance results – both in simulation and on the real system – of each controller. One controller is then selected to be used within two Controls Systems Engineering final course projects, both involving the robot traveling along a predetermined route. The controller’s performance is analyzed to determine whether it improves upon the accumulation of error in the robot’s position when the projects are executed without control.
Electronic Sound Analysis with Hardware System and Remote Internet Display
Currently, standards from government agencies such as the National Institute for Occupation Safety and Health exist to aid in safeguarding individuals’ capacity for hearing, but only in factory settings in which large machines often produce loud levels of sound. Neglecting the fact that these preventative measures are only in place in the most limited of settings, no system currently exists to observe and report sound exposure levels in a manner timely or easily recognizable enough to adequately serve its purpose of hearing conservation. Musicians may also incur significant levels of risk for hearing loss in their day-to-day rehearsals and concerts, from high school marching bands to university wind bands. As a result, music school accrediting organizations such as the National Association of Schools of Music and even the European Union have begun taking steps meant to determine the risks associated with music. To meet these goals and improve upon current technologies, a system has been developed that electronically records sound levels utilizing modern hardware, increases the speed of reporting by transmitting data over computer networks and the Internet, and displays measures calculated from these data in a web browser for a highly viewable, user-friendly interface.
Development of Indium Oxide Nanowires as Efficient Gas Sensors
Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface.
Development of Silicon Nanowire Field Effect Transistors
An economically reliable technique for the synthesis of silicon nanowire was developed using silicon chloride as source material. The 30-40 micron long nanowires were found to have diameters ranging from 40 – 100 nm. An amorphous oxide shell covered the nanowires, post-growth. Raman spectroscopy confirmed the composition of the shell to be silicon-dioxide. Photoluminescence measurements of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell. Etching of the oxide shell was found to decrease the intensity of green emission. n-type doping of the silicon nanowires was achieved using antimony as the dopant. The maximum dopant concentration was achieved by post-growth diffusion. Intrinsic nanowire parameters were determined by implementation of the as-grown and antimony doped silicon nanowires in field effect transistor configuration.
An Arduino Based Control System for a Brackish Water Desalination Plant
Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.
Parameter Estimation of Microwave Filters
The focus of this thesis is on developing theories and techniques to extract lossy microwave filter parameters from data. In the literature, the Cauchy methods have been used to extract filters’ characteristic polynomials from measured scattering parameters. These methods are described and some examples are constructed to test their performance. The results suggest that the Cauchy method does not work well when the Q factors representing the loss of filters are not even. Based on some prototype filters and the relationship between Q factors and the loss, we conduct preliminary studies on alternative representations of the characteristic polynomials. The parameters in these new models are extracted using the Levenberg–Marquardt algorithm to accurately estimate characteristic polynomials and the loss information.
Simulation and Performance Analysis of Strategic Air Traffic Management under Weather Uncertainty
In this thesis, I introduce a promising framework for representing an air traffic flow (stream) and flow-management action operating under weather uncertainty. I propose to use a meshed queuing and Markov-chain model---specifically, a queuing model whose service-rates are modulated by an underlying Markov chain describing weather-impact evolution---to capture traffic management in an uncertain environment. Two techniques for characterizing flow-management performance using the model are developed, namely 1) a master-Markov-chain representation technique that yields accurate results but at relatively high computational cost, and 2) a jump-linear system-based approximation that has promising scalability. The model formulation and two analysis techniques are illustrated with numerous examples. Based on this initial study, I believe that the interfaced weather-impact and traffic-flow model analyzed here holds promise to inform strategic flow contingency management in NextGen.
Automatic Extraction of Highlights from a Baseball Video Using HMM and MPEG-7 Descriptors
In today’s fast paced world, as the number of stations of television programming offered is increasing rapidly, time accessible to watch them remains same or decreasing. Sports videos are typically lengthy and they appeal to a massive crowd. Though sports video is lengthy, most of the viewer’s desire to watch specific segments of the video which are fascinating, like a home-run in a baseball or goal in soccer i.e., users prefer to watch highlights to save time. When associated to the entire span of the video, these segments form only a minor share. Hence these videos need to be summarized for effective presentation and data management. This thesis explores the ability to extract highlights automatically using MPEG-7 features and hidden Markov model (HMM), so that viewing time can be reduced. Video is first segmented into scene shots, in which the detection of the shot is the fundamental task. After the video is segmented into shots, extraction of key frames allows a suitable representation of the whole shot. Feature extraction is crucial processing step in the classification, video indexing and retrieval system. Frame features such as color, motion, texture, edges are extracted from the key frames. A baseball highlight contains certain types of scene shots and these shots follow a particular transition pattern. The shots are classified as close-up, out-field, base and audience. I first try to identify the type of the shot using low level features extracted from the key frames of each shot. For the identification of the highlight I use the hidden Markov model using the transition pattern of the shots in time domain. Experimental results suggest that with reasonable accuracy highlights can be extracted from the video.
A Bidirectional Two-Hop Relay Network Using GNU Radio and USRP
A bidirectional two-hop relay network with decode-and-forward strategy is implemented using GNU Radio (software) and several USRPs (hardware) on Ubuntu (operating system). The relay communication system is comprised of three nodes; Base Station A, Base Station B, and Relay Station (the intermediate node). During the first time slot, Base Station A and Base Station B will each transmit data, e.g., a JPEG file, to Relay Station using DBPSK modulation and FDMA. For the final time slot, Relay Station will perform a bitwise XOR of the data, and transmit the XORed data to Base Station A and Base Station B, where the received data is decoded by performing another XOR operation with the original data.
Consensus Building in Sensor Networks and Long Term Planning for the National Airspace System
In this thesis, I present my study on the impact of multi-group network structure on the performance of consensus building strategies, and the preliminary mathematical formulation of the problem on improving the performance of the National Airspace system (NAS) through long-term investment. The first part of the thesis is concerned with a structural approach to the consensus building problem in multi-group distributed sensor networks (DSNs) that can be represented by bipartite graph. Direct inference of the convergence behavior of consensus strategies from multi-group DSN structure is one of the contributions of this thesis. The insights gained from the analysis facilitate the design and development of DSNs that meet specific performance criteria. The other part of the thesis is concerned with long-term planning and development of the NAS at a network level, by formulating the planning problem as a resource allocation problem for a flow network. The network-level model viewpoint on NAS planning and development will give insight to the structure of future NAS and will allow evaluation of various paradigms for the planning problem.
A Real-Time Electronic Sound Analysis System with Graphical User Interface
Noise-induced hearing loss is a serious problem common to musical environments. Current dosimetry technology is primarily designed for industrial environments and not suited for musical settings. At present, there are no government regulations that apply to the educational music environment as it relates to monitoring and prevention of hearing loss. Also, no system exists than can serve as a proactive tool in observation and reporting of sound exposure levels with the goal of hearing conservation. Newly proposed system takes a software based approach in designing a proactive dosimetry system that can assess the risk of sound noise exposure. It provides real-time feedback trough a graphical user interface that is capable of database storage for further study.
Kalman Filtering Approach to Optimize OFDM Data Rate
This study is based on applying a non-linear mapping method, here the unscented Kalman filter; to estimate and optimize data rate resulting from the arrival rate having a Poisson distribution in an orthogonal frequency division multiplexing (OFDM) transmission system. OFDM is an emerging multi-carrier modulation scheme. With the growing need for quality of service in wireless communications, it is highly necessary to optimize resources in such a way that the overall performance of the system models should rise while keeping in mind the objective to achieve high data rate and efficient spectral methods in the near future. In this study, the results from the OFDM-TDMA transmission system have been used to apply cross-layer optimization between layers so as to treat different resources between layers simultaneously. The main controller manages the transmission of data between layers using the multicarrier modulation techniques. The unscented Kalman filter is used here to perform nonlinear mapping by estimating and optimizing the data rate, which result from the arrival rate having a Poisson distribution.
Matlab Implementation of a Tornado Forward Error Correction Code
This research discusses how the design of a tornado forward error correcting channel code (FEC) sends digital data stream profiles to the receiver. The complete design was based on the Tornado channel code, binary phase shift keying (BPSK) modulation on a Gaussian channel (AWGN). The communication link was simulated by using Matlab, which shows the theoretical systems efficiency. Then the data stream was input as data to be simulated communication systems using Matlab. The purpose of this paper is to introduce the audience to a simulation technique that has been successfully used to determine how well a FEC expected to work when transferring digital data streams. The goal is to use this data to show how FEC optimizes a digital data stream to gain a better digital communications systems. The results conclude by making comparisons of different possible styles for the Tornado FEC code.
Design and Implementation of Broad Band and Narrow Band Antennas and Their Applications
The thesis deals with the design and implementation of broadband and narrowband antennas and their applications in practical environment. In this thesis, a new concept for designing the UWB antenna is proposed based on the CRLH metamaterials and this UWB antenna covers a frequency range from 2.45 GHz to 11.6 GHz. Based on the design of the UWB antenna, another antenna is developed that can cover a very wide bandwidth i.e from 0.66 GHz to 120 GHz. This antenna can not only be used for UWB applications but also for other communication systems working below the UWB spectrum such as GSM, GPS, PCS and Bluetooth. The proposed antenna covering the bandwidth from 0.66 GHz to 120 GHz is by far the largest bandwidth antenna developed based on metamaterials. Wide band antennas are not preferred for sensing purpose as it is difficult to differentiate the received signals. A multiband antenna which can be used as a strain sensor for structural health monitoring is proposed. The idea is to correlate the strain applied along the length or width with the multiple resonant frequencies. This gives the advantage of detecting the strain applied along any direction (either length or width), thus increasing the sensing accuracy. Design and application of a narrow-band antenna as a temperature sensor is also presented. This sensor can be used to detect very high temperature changes (>10000C). This sensor does not require a battery, can be probed wirelessly, simple and can be easily fabricated, can withstand harsh environmental conditions.
Communication System over Gnu Radio and OSSIE
GNU Radio and OSSIE (Open-Source SCA (Software communication architecture) Implementation-Embedded) are two open source software toolkits for SDR (Software Defined Radio) developments, both of them can be supported by USRP (Universal Software Radio Peripheral). In order to compare the performance of these two toolkits, an FM receiver over GNU Radio and OSSIE are tested in my thesis, test results are showed in Chapter 4 and Chapter 5. Results showed that the FM receiver over GNU Radio has better performance, due to the OSSIE is lack of synchronization between USRP interface and the modulation /demodulation components. Based on this, the SISO (Single Input Single Output) communication system over GNU Radio is designed to transmit and receive sound or image files between two USRP equipped with RFX2400 transceiver at 2.45G frequency. Now, GNU Radio and OSSIE are widely used for academic research, but the future work based on GNU Radio and OSSIE can be designed to support MIMO, sensor network, and real time users etc.
A New Wireless Sensor Node Design for Program Isolation and Power Flexibility
Over-the-air programming systems for wireless sensor networks have drawbacks that stem from fundamental limitations in the hardware used in current sensor nodes. Also, advances in technology make it feasible to use capacitors as the sole energy storage mechanism for sensor nodes using energy harvesting, but most current designs require additional electronics. These two considerations led to the design of a new sensor node. A microcontroller was chosen that meets the Popek and Goldberg virtualization requirements. The hardware design for this new sensor node is presented, as well as a preliminary operating system. The prototypes are tested, and demonstrated to be sustainable with a capacitor and solar panel. The issue of capacitor leakage is considered and measured.
A Study of Anti-collision Multi-tag Identification Algorithms for Passive RFID Systems
The major advantages of radio frequency identification (RFID) technology over barcodes are that the RFID-tagged objects do not require to be in line-of-sight with the reader for their identification and multiple objects can be read simultaneously. But when multiple objects are read simultaneously there is always a problem of collision which reduces the efficiency of the system. This thesis presents a comprehensive study of the dynamic framed slotted ALOHA (DFSA)-based anti-collision multi-tag identification algorithms for passive RFID system. Performance of various DFSA algorithms is compared through extensive simulation results. In addition, a number of simple performance improvement techniques have also been investigated in this thesis, including improved estimation techniques for the number of tags in each read cycle and a low-complexity heuristic stopping criterion that can be easily implemented in the practical system.
An investigation into graph isomorphism based zero-knowledge proofs.
Zero-knowledge proofs protocols are effective interactive methods to prove a node's identity without disclosing any additional information other than the veracity of the proof. They are implementable in several ways. In this thesis, I investigate the graph isomorphism based zero-knowledge proofs protocol. My experiments and analyses suggest that graph isomorphism can easily be solved for many types of graphs and hence is not an ideal solution for implementing ZKP.
Integrating environmental data acquisition and low cost Wi-Fi data communication.
This thesis describes environmental data collection and transmission from the field to a server using Wi-Fi. Also discussed are components, radio wave propagation, received power calculations, and throughput tests. Measured receive power resulted close to calculated and simulated values. Throughput tests resulted satisfactory. The thesis provides detailed systematic procedures for Wi-Fi radio link setup and techniques to optimize the quality of a radio link.
Study of the effects of background and motion camera on the efficacy of Kalman and particle filter algorithms.
This study compares independent use of two known algorithms (Kalmar filter with background subtraction and Particle Filter) that are commonly deployed in object tracking applications. Object tracking in general is very challenging; it presents numerous problems that need to be addressed by the application in order to facilitate its successful deployment. Such problems range from abrupt object motion, during tracking, to a change in appearance of the scene and the object, as well as object to scene occlusions, and camera motion among others. It is important to take into consideration some issues, such as, accounting for noise associated with the image in question, ability to predict to an acceptable statistical accuracy, the position of the object at a particular time given its current position. This study tackles some of the issues raised above prior to addressing how the use of either of the aforementioned algorithm, minimize or in some cases eliminate the negative effects
Design and Implementation of Communication Platform for Autonomous Decentralized Systems
This thesis deals with the decentralized autonomous system, in which individual nodes acting like peers, communicate and participate in collaborative tasks and decision making processes. An experimental test-bed is created using four Garcia robots. The robots act like peers and interact with each other using user datagram protocol (UDP) messages. Each robot continuously monitors for messages coming from other robots and respond accordingly. Each robot broadcasts its location to all the other robots within its vicinity. Robots do not have built-in global positioning system (GPS). So, an indoor localization method based on signal strength is developed to estimate robot's position. The signal strength that the robot gets from the nearby wireless access points is used to calculate the robot's position. Trilateration and fingerprint are some of the indoor localization methods used for this purpose. The communication functionality of the decentralized system has been tested and verified in the autonomous systems laboratory.
Implementation of Turbo Codes on GNU Radio
This thesis investigates the design and implementation of turbo codes over the GNU radio. The turbo codes is a class of iterative channel codes which demonstrates strong capability for error correction. A software defined radio (SDR) is a communication system which can implement different modulation schemes and tune to any frequency band by means of software that can control the programmable hardware. SDR utilizes the general purpose computer to perform certain signal processing techniques. We implement a turbo coding system using the Universal Software Radio Peripheral (USRP), a widely used SDR platform from Ettus. Detail configuration and performance comparison are also provided in this research.
Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are ...
Comparison of Source Diversity and Channel Diversity Methods on Symmetric and Fading Channels.
Channel diversity techniques are effective ways to combat channel fading and noise in communication systems. In this thesis, I compare the performance of source and channel diversity techniques on fading and symmetric continuous channels. My experiments suggest that when SNR is low, channel diversity performs better, and when SNR is high, source diversity shows better performance than channel diversity.
Applied Real-Time Integrated Distributed Control Systems: An Industrial Overview and an Implemented Laboratory Case Study
This thesis dissertation mainly compares and investigates laboratory study of different implementation methodologies of applied control systems and how they can be adopted in industrial, as well as commercial, automation applications. Namely the research paper aims to assess or evaluate eventual feedback control loops' performance and robustness over multiple conventional or state-of-the-art technologies in the field of applied industrial automation and instrumentation by implementing a laboratory case study setup: the ball on beam system. Hence, the paper tries to close the gap between industry and academia by: first, conducting a historical study and background information of main evolutional and technological eras in the field of industrial process control automation and instrumentation. Then, some related basic theoretical as well as practical concepts are reviewed in Chapter 2 of the report before displaying the detailed design. After that, the next Chapter, analyses the ball on beam control system problem as the case studied in the context of this research through reviewing previous literature, modeling and simulation. The following Chapter details the proposed design and implementation of the ball on beam case study as if it is under the introduced distributed industrial automation architecture. Finally, Chapter 5 concludes this work by listing several points leaned, remarks, and observations, and stating possible development and the future vision of this research.
The Design and Implementation of an Effective Vision-Based Leader-Follower Tracking Algorithm Using PI Camera
The thesis implements a vision-based leader-follower tracking algorithm on a ground robot system. One camera is the only sensor installed the leader-follower system and is mounted on the follower. One sphere is the only feature installed on the leader. The camera identifies the sphere in the openCV Library and calculates the relative position between the follower and leader using the area and position of the sphere in the camera frame. A P controller for the follower and a P controller for the camera heading are built. The vision-based leader-follower tracking algorithm is verified according to the simulation and implementation.
A Low-cost Wireless Sensor Network System Using Raspberry Pi and Arduino for Environmental Monitoring Applications
Sensors are used to convert physical quantity into numerical data. Various types of sensors can be coupled together to make a single node. A distributed array of these nodes can be deployed to collect environmental data by using appropriate sensors. Application of low powered short range radio transceivers as a communication medium between spatially distributed sensor nodes is known as wireless sensor network. In this thesis I build such a network by using Arduino, Raspberry Pi and XBee. My goal was to accomplish a prototype system so that the collected data can be stored and managed both from local and remote locations. The system was targeted for both indoor and outdoor environment. As a part of the development a controlling application was developed to manage the sensor nodes, wireless transmission, to collect and store data using a database management service. Raspberry Pi was used as base station and webserver. Few web based application was developed for configuring the network, real time monitoring, and database management. Whole system functions as a single entity. The use of open source hardware and software made it possible to keep the cost of the system low. The successful development of the system can be considered as a prototype which needs to be expanded for large scale environmental monitoring applications.
A Lego Mindstorms Nxt Based Test Bench for Multiagent Exploratory Systems and Distributed Network Partitioning
Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for self-partitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the Lego® Mindstorms’ NXT on a graphical programming platform using National Instruments’ LabVIEW™ forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.
Development of High Gain Ultraviolet Photo Detectors Based on Zinc Oxide Nanowires
Semiconductor nanowires acts as an emerging class of materials with great potential for applications in future electronic devices. Small size, large surface to volume ratio and high carrier mobility of nanowires make them potentially useful for electronic applications with high integration density. In this thesis, the focus was on the growth of high quality ZnO nanowires, fabrication of field effect transistors and UV- photodetectros based on them. Intrinsic nanowire parameters such as carrier concentration, field effect mobility and resistivity were measured by configuring nanowires as field effect transistors. The main contribution of this thesis is the development of a high gain UV photodetector. A single ZnO nanowire functioning as a UV photodetector showed promising results with an extremely high spectral responsivity of 120 kA/W at wavelength of 370 nm. This corresponds to high photoconductive gain of 2150. To the best of our knowledge, this is the highest responsivity and gain reported so far, the previous values being responsivity=40 kA/W and gain=450. The enhanced photoconductive behavior is attributed to the presence of surface states that acts as hole traps which increase the life time of photogenerated electrons raising the photocurrent. This work provides the evidence of such solid states and preliminary results to modify the surface of ZnO nanowire is also produced.
Parameter Estimation Using Consensus Building Strategies with Application to Sensor Networks
Sensor network plays a significant role in determining the performance of network inference tasks. A wireless sensor network with a large number of sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in WSN is developing an efficient protocol which has a significant impact on the convergence of the network. Parameter estimation is one of the most important applications of sensor network. In order to model such large and complex networks for estimation, efficient strategies and algorithms which take less time to converge are being developed. To deal with this challenge, an approach of having multilayer network structure to estimate parameter and reach convergence in less time is estimated by comparing it with known gossip distributed algorithm. Approached Multicast multilayer algorithm on a network structure of Gaussian mixture model with two components to estimate parameters were compared and simulated with gossip algorithm. Both the algorithms were compared based on the number of iterations the algorithms took to reach convergence by using Expectation Maximization Algorithm.Finally a series of theoretical and practical results that explicitly showed that Multicast works better than gossip in large and complex networks for estimation in consensus building strategies.
Synthesis and Design of Microwave Filters and Duplexers with Single and Dual Band Responses
In this thesis the general Chebyshev filter synthesis procedure to generate transfer and reflection polynomials and coupling matrices were described. Key concepts such as coupled resonators, non-resonant nodes have been included. This is followed by microwave duplexer synthesis. Next, a technique to design dual band filter has been described including ways to achieve desired return loss and rejection levels at specific bands by manipulating the stopbands and transmission zeros. The concept of dual band filter synthesis has been applied on the synthesis of microwave duplexer to propose a method to synthesize dual band duplexers. Finally a numerical procedure using Cauchy method has been described to estimate the filter and duplexer polynomials from measured responses. The concepts in this thesis can be used to make microwave filters and duplexers more compact, efficient and cost effective.
Low Leakage Asymmetric Stacked Sram Cell
Memory is an important part of any digital processing system. On-chip SRAM can be found in various levels of the memory hierarchy in a processor and occupies a considerable area of the chip. Leakage is one of the challenges which shrinking of technology has introduced and the leakage of SRAM constitutes a substantial part of the total leakage power of the chip due to its large area and the fact that many of the cells are idle without any access. In this thesis, we introduce asymmetric SRAM cells using stacked transistors which reduce the leakage up to 26% while increasing the delay of the cell by only 1.2% while reducing the read noise margin of the cell by only 15.7%. We also investigate an asymmetric cell configuration in which increases the delay by 33% while reduces the leakage up to 30% and reducing the read noise margin by only 1.2% compared to a regular SRAM cell.
Design and Application of a New Planar Balun
The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna. The antenna is working in the S-band radio frequency and achieves a measured 36% fractional bandwidth for return loss less than -10 dB. The antenna demonstrates a good agreement between its measurement and simulation results. The impact of the parasitic director on the antenna’s performance is also investigated. The gain and the frequency range of the antenna have been reduced due to the absence of this element. This reduction presents in simulation and measurement results with very close agreement.
Dual-band Microwave Device Design
This thesis presents a brief introduction to microwave components and technology. It also presents two novel dual-band designs, their analysis, topology, simulation and fabrication. In chapter 2, a novel dual-band bandpass filter using asymmetric stub-loaded stepped-impedance resonators (SLSIRs) operating at 1 and 2.6 GHz is shown. This type of design applies suitable arrangements to improve the filter’s performance. Then, in chapter 3, a novel dual-band balun (transforms unbalanced input signals to balanced output signals or vice versa) operating at 1.1 and 2 GHz with flexible frequency ratios is presented, which has more advantages in microwave applications. Then, conclusion and future works are discussed in chapter 4.
Design and Application of Phased Array System
Since its invention, phased array has been extensively applied in both military and civil areas. The applications include target detecting and tracking, space probe communication, broadcasting, human-machine interfaces, and remote sensing. Although the phased array applications show a broad range of potential market, there are some limitations of phased array's development: high cost, complex structure, narrow bandwidth, and high power consumption. Therefore, novel ideas are needed to reduce these constraints. In this thesis, several new approaches about the design and application of phased array are presents. First, the principle of phased array and fundamental design equations are introduced. Second, a new application of phased array antenna for radar respiration measurement is presented. By integrating a 4×4 Butler matrix with four-element antenna array, there will be four distinct main beams in radiation pattern. This new approach can improve the measurement accuracy and realize a high detecting rate. Third, a compact phased array antenna system based on dual-band operations is introduced. Dual-band function can make N-antenna system obtain 2N unique radiation beams (N is an integer) and achieve a significant size reduction compared to the conventional single-band system. To verify the design concept, a four-element phased array antenna working at 5GHz and 8GHz is designed and fabricated. The measurement results make a good agreement with the simulations. Finally, a novel architecture of steering phase feeding network by using bi-directional series-fed topology is presented. This bi-directional series-fed network needs less phase shifters and realizes steering phase function by applying control voltage.