UNT Libraries - 215 Matching Results

Search Results

Multiresolutional/Fractal Compression of Still and Moving Pictures
The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user.
A Theoretical Network Model and the Incremental Hypercube-Based Networks
The study of multicomputer interconnection networks is an important area of research in parallel processing. We introduce vertex-symmetric Hamming-group graphs as a model to design a wide variety of network topologies including the hypercube network.
A Multi-Time Scale Learning Mechanism for Neuromimic Processing
Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made.
A Highly Fault-Tolerant Distributed Database System with Replicated Data
Because of the high cost and impracticality of a high connectivity network, most recent research in transaction processing has focused on a distributed replicated database system. In such a system, multiple copies of a data item are created and stored at several sites in the network, so that the system is able to tolerate more crash and communication failures and attain higher data availability. However, the multiple copies also introduce a global inconsistency problem, especially in a partitioned network. In this dissertation a tree quorum algorithm is proposed to solve this problem, imposing a logical tree structure along with dynamic system reconfiguration on all the copies of each data item. The proposed algorithm can be viewed as a dynamic voting technique which, with the help of an appropriate concurrency control algorithm, exhibits the major advantages of quorum-based replica control algorithms and of the available copies algorithm, so that a single copy is read for a read operation and a quorum of copies is written for a write operation. In addition, read and write quorums are computed dynamically and independently. As a result expensive read operations, like those that require several copies of a data item to be read in most quorum schemes, are eliminated. Furthermore, the message costs of read and write operations are reduced by the use of smaller quorum sizes. Quorum sizes can be reduced to a constant in a lightly loaded system, and log n in a failure-free network, as well as [n +1/2] in a partitioned network in a heavily loaded system. On average, our algorithm requires fewer messages than the best known tree quorum algorithm, while still maintaining the same upper bound on quorum size. One-copy serializability is guaranteed with higher data availability and highest degree of fault tolerance (up to n - 1 site ...
Recognition of Face Images
The focus of this dissertation is a methodology that enables computer systems to classify different up-front images of human faces as belonging to one of the individuals to which the system has been exposed previously. The images can present variance in size, location of the face, orientation, facial expressions, and overall illumination. The approach to the problem taken in this dissertation can be classified as analytic as the shapes of individual features of human faces are examined separately, as opposed to holistic approaches to face recognition. The outline of the features is used to construct signature functions. These functions are then magnitude-, period-, and phase-normalized to form a translation-, size-, and rotation-invariant representation of the features. Vectors of a limited number of the Fourier decomposition coefficients of these functions are taken to form the feature vectors representing the features in the corresponding vector space. With this approach no computation is necessary to enforce the translational, size, and rotational invariance at the stage of recognition thus reducing the problem of recognition to the k-dimensional clustering problem. A recognizer is specified that can reliably classify the vectors of the feature space into object classes. The recognizer made use of the following principle: a trial vector is classified into a class with the greatest number of closest vectors (in the sense of the Euclidean distance) among all vectors representing the same feature in the database of known individuals. A system based on this methodology is implemented and tried on a set of 50 pictures of 10 individuals (5 pictures per individual). The recognition rate is comparable to that of most recent results in the area of face recognition. The methodology presented in this dissertation is also applicable to any problem of pattern recognition where patterns can be represented as a collection of black ...
Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design
The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching.
Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm
Representing time has been considered a general problem for artificial intelligence research for many years. More recently, the question of representing time has become increasingly important in representing human decision making process through connectionist expert systems. Because most human behaviors unfold over time, any attempt to represent expert performance, without considering its temporal nature, can often lead to incorrect results. A temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems, has been introduced. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications. A temporal backpropagation algorithm which supports the model has been developed. The model along with the temporal backpropagation algorithm makes it extremely practical to define any artificial neural network application. Also, an approach that can be followed to decrease the memory space used by weight matrix has been introduced. The algorithm was tested using a medical connectionist expert system to show how best we describe not only the disease but also the entire course of the disease. The system, first, was trained using a pattern that was encoded from the expert system knowledge base rules. Following then, series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The first series of experiments was done to determine if the training process worked as predicted. In the second series of experiments, the weight matrix in the trained system was defined as a function of time intervals before presenting the system with the learned patterns. The result of the two experiments indicate that both approaches produce correct results. The only difference between the two results ...
A Mechanism for Facilitating Temporal Reasoning in Discrete Event Simulation
This research establishes the feasibility and potential utility of a software mechanism which employs artificial intelligence techniques to enhance the capabilities of standard discrete event simulators. As background, current methods of integrating artificial intelligence with simulation and relevant research are briefly reviewed.
Using Normal Deduction Graphs in Common Sense Reasoning
This investigation proposes a powerful formalization of common sense knowledge based on function-free normal deduction graphs (NDGs) which form a powerful tool for deriving Horn and non-Horn clauses without functions. Such formalization allows common sense reasoning since it has the ability to handle not only negative but also incomplete information.
Using Extended Logic Programs to Formalize Commonsense Reasoning
In this dissertation, we investigate how commonsense reasoning can be formalized by using extended logic programs. In this investigation, we first use extended logic programs to formalize inheritance hierarchies with exceptions by adopting McCarthy's simple abnormality formalism to express uncertain knowledge. In our representation, not only credulous reasoning can be performed but also the ambiguity-blocking inheritance and the ambiguity-propagating inheritance in skeptical reasoning are simulated. In response to the anomalous extension problem, we explore and discover that the intuition underlying commonsense reasoning is a kind of forward reasoning. The unidirectional nature of this reasoning is applied by many reformulations of the Yale shooting problem to exclude the undesired conclusion. We then identify defeasible conclusions in our representation based on the syntax of extended logic programs. A similar idea is also applied to other formalizations of commonsense reasoning to achieve such a purpose.
A Timescale Estimating Model for Rule-Based Systems
The purpose of this study was to explore the subject of timescale estimating for rule-based systems. A model for estimating the timescale necessary to build rule-based systems was built and then tested in a controlled environment.
An Adaptive Linearization Method for a Constraint Satisfaction Problem in Semiconductor Device Design Optimization
The device optimization is a very important element in semiconductor technology advancement. Its objective is to find a design point for a semiconductor device so that the optimized design goal meets all specified constraints. As in other engineering fields, a nonlinear optimizer is often used for design optimization. One major drawback of using a nonlinear optimizer is that it can only partially explore the design space and return a local optimal solution. This dissertation provides an adaptive optimization design methodology to allow the designer to explore the design space and obtain a globally optimal solution. One key element of our method is to quickly compute the set of all feasible solutions, also called the acceptability region. We described a polytope-based representation for the acceptability region and an adaptive linearization technique for device performance model approximation. These efficiency enhancements have enabled significant speed-up in estimating acceptability regions and allow acceptability regions to be estimated for a larger class of device design tasks. Our linearization technique also provides an efficient mechanism to guarantee the global accuracy of the computed acceptability region. To visualize the acceptability region, we study the orthogonal projection of high-dimensional convex polytopes and propose an output sensitive algorithm for projecting polytopes into two dimensions.
Independent Quadtrees
This dissertation deals with the problem of manipulating and storing an image using quadtrees. A quadtree is a tree in which each node has four ordered children or is a leaf. It can be used to represent an image via hierarchical decomposition. The image is broken into four regions. A region can be a solid color (homogeneous) or a mixture of colors (heterogeneous). If a region is heterogeneous it is broken into four subregions, and the process continues recursively until all subregions are homogeneous. The traditional quadtree suffers from dependence on the underlying grid. The grid coordinate system is implicit, and therefore fixed. The fixed coordinate system implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead, a new tree must be built which is the result of one of these transformations. This dissertation introduces the independent quadtree. The independent quadtree is free of any underlying coordinate system. The tree is no longer rigid and can be easily translated, scaled, or rotated. Algorithms to perform these operations axe presented. The translation and rotation algorithms take constant time. The scaling algorithm has linear time in the number nodes in the tree. The disadvantage of independent quadtrees is the longer generation and display time. This dissertation also introduces an alternate method of hierarchical decomposition. This new method finds the largest homogeneous block with respect to the corners of the image. This block defines the division point for the decomposition. If the size of the block is below some cutoff point, it is deemed to be to small to make the overhead worthwhile and the traditional method is used instead. This new method is compared to the traditional method on randomly generated rectangles, triangles, and circles. The new method is shown to use significantly less space for all three ...
An Algorithm for the PLA Equivalence Problem
The Programmable Logic Array (PLA) has been widely used in the design of VLSI circuits and systems because of its regularity, flexibility, and simplicity. The equivalence problem is typically to verify that the final description of a circuit is functionally equivalent to its initial description. Verifying the functional equivalence of two descriptions is equivalent to proving their logical equivalence. This problem of pure logic is essential to circuit design. The most widely used technique to solve the problem is based on Binary Decision Diagram or BDD, proposed by Bryant in 1986. Unfortunately, BDD requires too much time and space to represent moderately large circuits for equivalence testing. We design and implement a new algorithm called the Cover-Merge Algorithm for the equivalence problem based on a divide-and-conquer strategy using the concept of cover and a derivational method. We prove that the algorithm is sound and complete. Because of the NP-completeness of the problem, we emphasize simplifications to reduce the search space or to avoid redundant computations. Simplification techniques are incorporated into the algorithm as an essential part to speed up the the derivation process. Two different sets of heuristics are developed for two opposite goals: one for the proof of equivalence and the other for its disproof. Experiments on a large scale of data have shown that big speed-ups can be achieved by prioritizing the heuristics and by choosing the most favorable one at each iteration of the Algorithm. Results are compared with those for BDD on standard benchmark problems as well as on random PLAs to perform an unbiased way of testing algorithms. It has been shown that the Cover-Merge Algorithm outperforms BDD in nearly all problem instances in terms of time and space. The algorithm has demonstrated fairly stabilized and practical performances especially for big PLAs under a wide ...
Convexity-Preserving Scattered Data Interpolation
Surface fitting methods play an important role in many scientific fields as well as in computer aided geometric design. The problem treated here is that of constructing a smooth surface that interpolates data values associated with scattered nodes in the plane. The data is said to be convex if there exists a convex interpolant. The problem of convexity-preserving interpolation is to determine if the data is convex, and construct a convex interpolant if it exists.
Study of Parallel Algorithms Related to Subsequence Problems on the Sequent Multiprocessor System
The primary purpose of this work is to study, implement and analyze the performance of parallel algorithms related to subsequence problems. The problems include string to string correction problem, to determine the longest common subsequence problem and solving the sum-range-product, 1 —D pattern matching, longest non-decreasing (non-increasing) (LNS) and maximum positive subsequence (MPS) problems. The work also includes studying the techniques and issues involved in developing parallel applications. These algorithms are implemented on the Sequent Multiprocessor System. The subsequence problems have been defined, along with performance metrics that are utilized. The sequential and parallel algorithms have been summarized. The implementation issues which arise in the process of developing parallel applications have been identified and studied.
A Machine Learning Method Suitable for Dynamic Domains
The efficacy of a machine learning technique is domain dependent. Some machine learning techniques work very well for certain domains but are ill-suited for other domains. One area that is of real-world concern is the flexibility with which machine learning techniques can adapt to dynamic domains. Currently, there are no known reports of any system that can learn dynamic domains, short of starting over (i.e., re-running the program). Starting over is neither time nor cost efficient for real-world production environments. This dissertation studied a method, referred to as Experience Based Learning (EBL), that attempts to deal with conditions related to learning dynamic domains. EBL is an extension of Instance Based Learning methods. The hypothesis of the study related to this research was that the EBL method would automatically adjust to domain changes and still provide classification accuracy similar to methods that require starting over. To test this hypothesis, twelve widely studied machine learning datasets were used. A dynamic domain was simulated by presenting these datasets in an uninterrupted cycle of train, test, and retrain. The order of the twelve datasets and the order of records within each dataset were randomized to control for order biases in each of ten runs. As a result, these methods provided datasets that represent extreme levels of domain change. Using the above datasets, EBL's mean classification accuracies for each dataset were compared to the published static domain results of other machine learning systems. The results indicated that the EBL's system performance was not statistically different (p>0.30) from the other machine learning methods. These results indicate that the EBL system is able to adjust to an extreme level of domain change and yet produce satisfactory results. This finding supports the use of the EBL method in real-world environments that incur rapid changes to both variables and ...
Practical Cursive Script Recognition
This research focused on the off-line cursive script recognition application. The problem is very large and difficult and there is much room for improvement in every aspect of the problem. Many different aspects of this problem were explored in pursuit of solutions to create a more practical and usable off-line cursive script recognizer than is currently available.
Quantifying Design Principles in Reusable Software Components
Software reuse can occur in various places during the software development cycle. Reuse of existing source code is the most commonly practiced form of software reuse. One of the key requirements for software reuse is readability, thus the interest in the use of data abstraction, inheritance, modularity, and aspects of the visible portion of module specifications. This research analyzed the contents of software reuse libraries to answer the basic question of what makes a good reusable software component. The approach taken was to measure and analyze various software metrics as mapped to design characteristics. A related research question investigated the change in the design principles over time. This was measured by comparing sets of Ada reuse libraries categorized into two time periods. It was discovered that recently developed Ada reuse components scored better on readability than earlier developed components. A benefit of this research has been the development of a set of "design for reuse" guidelines. These guidelines address coding practices as well as design principles for an Ada implementation. C++ software reuse libraries were also analyzed to determine if design principles can be applied in a language independent fashion. This research used cyclomatic complexity metrics, software science metrics, and traditional static code metrics to measure design features. This research provides at least three original contributions. First it collects empirical data about existing reuse libraries. Second, it develops a readability measure for software libraries which can aid in comparing libraries. And third, this research developed a set of coding and design guidelines for developers of reusable software. Future research can investigate how design principles for C++ change over time. Another topic for research is the investigation of systems employing reused components to determine which libraries are more successfully used than others.
The Design and Implementation of a Prolog Parser Using Javacc
Operatorless Prolog text is LL(1) in nature and any standard LL parser generator tool can be used to parse it. However, the Prolog text that conforms to the ISO Prolog standard allows the definition of dynamic operators. Since Prolog operators can be defined at run-time, operator symbols are not present in the grammar rules of the language. Unless the parser generator allows for some flexibility in the specification of the grammar rules, it is very difficult to generate a parser for such text. In this thesis we discuss the existing parsing methods and their modified versions to parse languages with dynamic operator capabilities. Implementation details of a parser using Javacc as a parser generator tool to parse standard Prolog text is provided. The output of the parser is an “Abstract Syntax Tree” that reflects the correct precedence and associativity rules among the various operators (static and dynamic) of the language. Empirical results are provided that show that a Prolog parser that is generated by the parser generator like Javacc is comparable in efficiency to a hand-coded parser.
Generating Machine Code for High-Level Programming Languages
The purpose of this research was to investigate the generation of machine code from high-level programming language. The following steps were undertaken: 1) Choose a high-level programming language as the source language and a computer as the target computer. 2) Examine all stages during the compiling of a high-level programming language and all data sets involved in the compilation. 3) Discover the mechanism for generating machine code and the mechanism to generate more efficient machine code from the language. 3) Construct an algorithm for generating machine code for the target computer. The results suggest that compiler is best implemented in a high-level programming language, and that SCANNER and PARSER should be independent of target representations, if possible.
An Empirical Study of How Novice Programmers Use the Web
Students often use the web as a source of help for problems that they encounter on programming assignments.In this work, we seek to understand how students use the web to search for help on their assignments.We used a mixed methods approach with 344 students who complete a survey and 41 students who participate in a focus group meetings and helped in recording data about their search habits.The survey reveals data about student reported search habits while the focus group uses a web browser plug-in to record actual search patterns.We examine the results collectively and as broken down by class year.Survey results show that at least 2/3 of the students from each class year rely on search engines to locate resources for help with their programming bugs in at least half of their assignments;search habits vary by class year;and the value of different types of resources such as tutorials and forums varies by class year.Focus group results exposes the high frequency web sites used by the students in solving their programming assignments.
Learning from small data set for object recognition in mobile platforms.
Did you stand at a door with a bunch of keys and tried to find the right one to unlock the door? Did you hold a flower and wonder the name of it? A need of object recognition could rise anytime and any where in our daily lives. With the development of mobile devices object recognition applications become possible to provide immediate assistance. However, performing complex tasks in even the most advanced mobile platforms still faces great challenges due to the limited computing resources and computing power. In this thesis, we present an object recognition system that resides and executes within a mobile device, which can efficiently extract image features and perform learning and classification. To account for the computing constraint, a novel feature extraction method that minimizes the data size and maintains data consistency is proposed. This system leverages principal component analysis method and is able to update the trained classifier when new examples become available . Our system relieves users from creating a lot of examples and makes it user friendly. The experimental results demonstrate that a learning method trained with a very small number of examples can achieve recognition accuracy above 90% in various acquisition conditions. In addition, the system is able to perform learning efficiently.
A Parallel Programming Language
The problem of programming a parallel processor is discussed. Previous methods of programming a parallel processor, analyzing a program for parallel paths, and special language features are discussed. Graph theory is used to define the three basic programming constructs: choice, sequence, repetition. The concept of mechanized programming is expanded to allow for total separation of control and computational sections of a program. A definition of a language is presented which provides for this separation. A method for developing the program graph is discussed. The control graph and data graph are developed separately. The two graphs illustrate control and data predecessor relationships used in determining parallel elements of a program.
An Interpreter for the Basic Programming Language
In this thesis, the first chapter provides the general description of this interpreter. The second chapter contains a formal definition of the syntax of BASIC along with an introduction to the semantics. The third chapter contains the design of data structure. The fourth chapter contains the description of algorithms along with stages for testing the interpreter and the design of debug output. The stages and actions-are represented internally to the computer in tabular forms. For statement parsing working syntax equations are established. They serve as standards for the conversion of source statements into object pseudocodes. As the statement is parsed for legal form, pseudocodes for this statement are created. For pseudocode execution, pseudocodes are represented internally to the computer in tabular forms.
A Design Approach for Digital Computer Peripheral Controllers, Case Study Design and Construction
The purpose of this project was to describe a novel design approach for a digital computer peripheral controller, then design and construct a case study controller. This document consists of three chapters and an appendix. Chapter II presents the design approach chosen; a variation to a design presented by Charles R. Richards in an article published in Electronics magazine. Richards' approach consists of a finite state machine circuitry controlling all the functions of a controller. The variation to Richards' approach consists of considering the various logically independent processes which a controller carries out and assigning control of each process to a separate finite state machine. The appendix contains the documentation of the design and construction of the controller.
Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty
Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Network Security Tool for a Novice
Network security is a complex field that is handled by security professionals who need certain expertise and experience to configure security systems. With the ever increasing size of the networks, managing them is going to be a daunting task. What kind of solution can be used to generate effective security configurations by both security professionals and nonprofessionals alike? In this thesis, a web tool is developed to simplify the process of configuring security systems by translating direct human language input into meaningful, working security rules. These human language inputs yield the security rules that the individual wants to implement in their network. The human language input can be as simple as, "Block Facebook to my son's PC". This tool will translate these inputs into specific security rules and install the translated rules into security equipment such as virtualized Cisco FWSM network firewall, Netfilter host-based firewall, and Snort Network Intrusion Detection. This tool is implemented and tested in both a traditional network and a cloud environment. One thousand input policies were collected from various users such as staff from UNT departments' and health science, including individuals with network security background as well as students with a non-computer science background to analyze the tool's performance. The tool is tested for its accuracy (91%) in generating a security rule. It is also tested for accuracy of the translated rule (86%) compared to a standard rule written by security professionals. Nevertheless, the network security tool built has shown promise to both experienced and inexperienced people in network security field by simplifying the provisioning process to result in accurate and effective network security rules.
Algorithms for Efficient Utilization of Wireless Bandwidth and to Provide Quality-of-Service in Wireless Networks
This thesis presents algorithms to utilize the wireless bandwidth efficiently and at the same time meet the quality of service (QoS) requirements of the users. In the proposed algorithms we present an adaptive frame structure based upon the airlink frame loss probability and control the admission of call requests into the system based upon the load on the system and the QoS requirements of the incoming call requests. The performance of the proposed algorithms is studied by developing analytical formulations and simulation experiments. Finally we present an admission control algorithm which uses an adaptive delay computation algorithm to compute the queuing delay for each class of traffic and adapts the service rate and the reliability in the estimates based upon the deviation in the expected and obtained performance. We study the performance of the call admission control algorithm by simulation experiments. Simulation results for the adaptive frame structure algorithm show an improvement in the number of users in the system but there is a drop in the system throughput. In spite of the lower throughput the adaptive frame structure algorithm has fewer QoS delay violations. The adaptive call admission control algorithm adapts the call dropping probability of different classes of traffic and optimizes the system performance w.r.t the number of calls dropped and the reliability in meeting the QoS promised when the call is admitted into the system.
The Design and Implementation of an Intelligent Agent-Based File System
As bandwidth constraints on LAN/WAN environments decrease, the demand for distributed services will continue to increase. In particular, the proliferation of user-level applications requiring high-capacity distributed file storage systems will demand that such services be universally available. At the same time, the advent of high-speed networks have made the deployment of application and communication solutions based upon an Intelligent Mobile Agent (IMA) framework practical. Agents have proven to present an ideal development paradigm for the creation of autonomous large-scale distributed systems, and an agent-based communication scheme would facilitate the creation of independently administered distributed file services. This thesis thus outlines an architecture for such a distributed file system based upon an IMA communication framework.
Dynamic Grid-Based Data Distribution Management in Large Scale Distributed Simulations
Distributed simulation is an enabling concept to support the networked interaction of models and real world elements that are geographically distributed. This technology has brought a new set of challenging problems to solve, such as Data Distribution Management (DDM). The aim of DDM is to limit and control the volume of the data exchanged during a distributed simulation, and reduce the processing requirements of the simulation hosts by relaying events and state information only to those applications that require them. In this thesis, we propose a new DDM scheme, which we refer to as dynamic grid-based DDM. A lightweight UNT-RTI has been developed and implemented to investigate the performance of our DDM scheme. Our results clearly indicate that our scheme is scalable and it significantly reduces both the number of multicast groups used, and the message overhead, when compared to previous grid-based allocation schemes using large-scale and real-world scenarios.
The Role of Intelligent Mobile Agents in Network Management and Routing
In this research, the application of intelligent mobile agents to the management of distributed network environments is investigated. Intelligent mobile agents are programs which can move about network systems in a deterministic manner in carrying their execution state. These agents can be considered an application of distributed artificial intelligence where the (usually small) agent code is moved to the data and executed locally. The mobile agent paradigm offers potential advantages over many conventional mechanisms which move (often large) data to the code, thereby wasting available network bandwidth. The performance of agents in network routing and knowledge acquisition has been investigated and simulated. A working mobile agent system has also been designed and implemented in JDK 1.2.
Multi-Agent Architecture for Internet Information Extraction and Visualization
The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
A Study of Perceptually Tuned, Wavelet Based, Rate Scalable, Image and Video Compression
In this dissertation, first, we have proposed and implemented a new perceptually tuned wavelet based, rate scalable, and color image encoding/decoding system based on the human perceptual model. It is based on state-of-the-art research on embedded wavelet image compression technique, Contrast Sensitivity Function (CSF) for Human Visual System (HVS) and extends this scheme to handle optimal bit allocation among multiple bands, such as Y, Cb, and Cr. Our experimental image codec shows very exciting results in compression performance and visual quality comparing to the new wavelet based international still image compression standard - JPEG 2000. On the other hand, our codec also shows significant better speed performance and comparable visual quality in comparison to the best codec available in rate scalable color image compression - CSPIHT that is based on Set Partition In Hierarchical Tree (SPIHT) and Karhunen-Loeve Transform (KLT). Secondly, a novel wavelet based interframe compression scheme has been developed and put into practice. It is based on the Flexible Block Wavelet Transform (FBWT) that we have developed. FBWT based interframe compression is very efficient in both compression and speed performance. The compression performance of our video codec is compared with H263+. At the same bit rate, our encoder, being comparable to the H263+ scheme, with a slightly lower (Peak Signal Noise Ratio (PSNR) value, produces a more visually pleasing result. This implementation also preserves scalability of wavelet embedded coding technique. Thirdly, the scheme to handle optimal bit allocation among color bands for still imagery has been modified and extended to accommodate the spatial-temporal sensitivity of the HVS model. The bit allocation among color bands based on Kelly's spatio-temporal CSF model is designed to achieve the perceptual optimum for human eyes. A perceptually tuned, wavelet based, rate scalable video encoding/decoding system has been designed and implemented based on this ...
A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base
One of the greatest problems facing researchers in the sub field of Artificial Intelligence known as Intelligent Tutoring Systems (ITS) is the selection of a knowledge base designs that will facilitate the modification of the knowledge base. The Class-Entity-Relationship-Attribute (CERA), proposed by R. P. Brazile, holds certain promise as a more generic knowledge base design framework upon which can be built robust and efficient ITS. This study has a twofold purpose. The first is to demonstrate that a CERA knowledge base can be constructed for an ITS on a subset of the domain of Cretaceous paleontology and function as the "expert module" of the ITS. The second is to test the validity of the ideas that students guided through a lesson learn more factual knowledge, while those who explore the knowledge base that underlies the lesson through query at their own pace will be able to formulate their own integrative knowledge from the knowledge gained in their explorations and spend more time on the system. This study concludes that a CERA-based system can be constructed as an effective teaching tool. However, while an ITS - treatment provides for statistically significant gains in achievement test scores, the type of treatment seems not to matter as much as time spent on task. This would seem to indicate that a query-based system which allows the user to progress at their own pace would be a better type of system for the presentation of material due to the greater amount of on-line computer time exhibited by the users.
Execution Time Analysis through Software Monitors
The analysis of an executing program and the isolation of critical code has been a problem since the first program was written. This thesis examines the process of program analysis through the use of a software monitoring system. Since there is a trend toward structured languages a subset of PL/I was developed t~o exhibit source statement monitoring and costing techniques. By filtering a PL/W program through a preorocessor which determines the cost of source statements and inserts monitoring code, a post-execution analysis of the program can be obtained. This analysis displays an estimated time cost for each source statements the number of times the statement w3s executed, and the product of these values. Additionally, a bar graph is printed in order to quickly locate very active code.
A Comparison of File Organization Techniques
This thesis compares the file organization techniques that are implemented on two different types of computer systems, the large-scale and the small-scale. File organizations from representative computers in each class are examined in detail: the IBM System/370 (OS/370) and the Harris 1600 Distributed Processing System with the Extended Communications Operating System (ECOS). In order to establish the basic framework for comparison, an introduction to file organizations is presented. Additionally, the functional requirements for file organizations are described by their characteristics and user demands. Concluding remarks compare file organization techniques and discuss likely future developments of file systems.
Automated Testing of Interactive Systems
Computer systems which interact with human users to collect, update or provide information are growing more complex. Additionally, users are demanding more thorough testing of all computer systems. Because of the complexity and thoroughness required, automation of interactive systems testing is desirable, especially for functional testing. Many currently available testing tools, like program proving, are impractical for testing large systems. The solution presented here is the development of an automated test system which simulates human users. This system incorporates a high-level programming language, ATLIS. ATLIS programs are compiled and interpretively executed. Programs are selected for execution by operator command, and failures are reported to the operator's console. An audit trail of all activity is provided. This solution provides improved efficiency and effectiveness over conventional testing methods.
FORTRAN Optimizations at the Source Code Level
This paper discusses FORTRAN optimizations that the user can perform manually at the source code level to improve object code performance. It makes use of descriptive examples within the text of the paper for explanatory purposes. The paper defines key areas in writing a FORTRAN program and recommends ways to improve efficiency in these areas.
A Computer Algorithm for Synthetic Seismograms
Synthetic seismograms are a computer-generated aid in the search for hydrocarbons. Heretofore the solution has been done by z-transforms. This thesis presents a solution based on the method of finite differences. The resulting algorithm is fast and compact. The method is applied to three variations of the problem, all three are reduced to the same approximating equation, which is shown to be optimal, in that grid refinement does not change it. Two types of algorithms are derived from the equation. The number of obvious multiplications, additions and subtractions of each is analyzed. Critical section of each requires one multiplication, two additions and two subtractions. Four sample synthetic seismograms are shown. Implementation of the new algorithm runs twice as fast as previous computer program.
Computerized Analysis of Radiograph Images of Embedded Objects as Applied to Bone Location and Mineral Content Measurement
This investigation dealt with locating and measuring x-ray absorption of radiographic images. The methods developed provide a fast, accurate, minicomputer control, for analysis of embedded objects. A PDP/8 computer system was interfaced with a Joyce Loebl 3CS Microdensitometer and a Leeds & Northrup Recorder. Proposed algorithms for bone location and data smoothing work on a twelve-bit minicomputer. Designs of a software control program and operational procedure are presented. The filter made wedge and limb scans monotonic from minima to maxima. It was tested for various convoluted intervals. Ability to resmooth the same data in multiple passes was tested. An interval size of fifteen works well in one pass.
A Left-to-Right Parsing Algorithm for THIS Programming Language
The subject of this investigation is a specific set of parsers known as LR parsers. Of primary interest is a LR parsing method developed by DeRemer which specifies a translation method which can be defined by a Deterministic Push-Down Automation (DPDA). The method of investigation was to apply DeRemer's parsing technique to a specific language known as THIS Programming Language (TPL). The syntax of TPL was redefined as state diagrams and these state diagrams were, in turn, encoded into two tables--a State-Action table and a Transition table. The tables were then incorporated into a PL/l adaptation of DeRemer's algorithm and tested against various TPL statements.
Software and Hardware Interface of a VOTRAX Terminal for the Fairchild F24 Computer
VOTRAX is a commercially available voice synthesizer for use with a digital computer. This thesis describes the design and implementation of a VOTRAX terminal for use with the Fairchild F24 computer. Chapters of the thesis consider the audio response technology, some characteristics of Phonetic English Speech, configuration of hardware, and describe the PHONO computer program which was developed. The last chapter discusses the advantages of the VOTRAX voice synthesizer and proposes a future version of the system with a time-sharing host computer.
Computer Analysis of Amino Acid Chromatography
The problem with which this research was done was that of applying the IBM360 computer to the analysis of waveforms from a Beckman model 120C liquid chromatograph. Software to interpret these waveforms was written in the PLl language. For a control run, input to the computer consisted of a digital tape containing the raw results of the chromatograph run. Output consisted of several graphs and charts giving the results of the analysis. In addition, punched output was provided which gave the name of each amino acid, its elution time and color constant. These punched cards were then input to the computer as input to the experimental run, along with the raw data on the digital tape. From the known amounts of amino acids in the control run and the ratio of control to experimental peak area, the amino acids of the unknown were quantified. The resulting programs provided a complete and easy to use solution to the problem of chromatographic data analysis.
A Top-Down Structured Programming Technique for Mini-Computers
This paper reviews numerous theoretical results on control structures and demonstrates their practical examples. This study deals with the design of run-time support routines by using top-down structured programming technique. A number of examples are given as illustration of this method. In conclusion, structured programming has proved to be an important methodology for systematic program design and development.
Speech Recognition Using a Synthesized Codebook
Speech sounds generated by a simple waveform synthesizer were used to create a vector quantization codebook for use in speech recognition. Recognition was tested over the TI-20 isolated word data base using a conventional DTW matching algorithm. Input speech was band limited to 300 - 3300 Hz, then passed through the Scott Instruments Corp. Coretechs process, implemented on a VET3 speech terminal, to create the speech representation for matching. Synthesized sounds were processed in software by a VET3 signal processing emulation program. Emulation and recognition were performed on a DEC VAX 11/750. The experiments were organized in 2 series. A preliminary experiment, using no vector quantization, provided a baseline for comparison. The original codebook contained 109 vectors, all derived from 2 formant synthesized sounds. This codebook was decimated through the course of the first series of experiments, based on the number of times each vector was used in quantizing the training data for the previous experiment, in order to determine the smallest subset of vectors suitable for coding the speech data base. The second series of experiments altered several test conditions in order to evaluate the applicability of the minimal synthesized codebook to conventional codebook training. The baseline recognition rate was 97%. The recognition rate for synthesized codebooks was approximately 92% for sizes ranging from 109 to 16 vectors. Accuracy for smaller codebooks was slightly less than 90%. Error analysis showed that the primary loss in dropping below 16 vectors was in coding of voiced sounds with high frequency second formants. The 16 vector synthesized codebook was chosen as the seed for the second series of experiments. After one training iteration, and using a normalized distortion score, trained codebooks performed with an accuracy of 95.1%. When codebooks were trained and tested on different sets of speakers, accuracy was 94.9%, indicating ...
Computer Realization of Human Music Cognition
This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This process yields a hierarchical stratification of all the musical events (notes) in a piece of music. It has been applied to several pieces of music with surprising results. In each case, the analysis obtained very closely resembles a structural analysis which would be supplied by a human theorist. The results obtained invite us to take another look at the representation of knowledge and perception from another perspective, that of a set of points in a topological space, and to ask if such a representation might not be useful in other domains. It also leads us to ask if such a ...
Classifying Pairwise Object Interactions: A Trajectory Analytics Approach
We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Privacy Preserving EEG-based Authentication Using Perceptual Hashing
The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Distributed Frameworks Towards Building an Open Data Architecture
Data is everywhere. The current Technological advancements in Digital, Social media and the ease at which the availability of different application services to interact with variety of systems are causing to generate tremendous volumes of data. Due to such varied services, Data format is now not restricted to only structure type like text but can generate unstructured content like social media data, videos and images etc. The generated Data is of no use unless been stored and analyzed to derive some Value. Traditional Database systems comes with limitations on the type of data format schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed framework that support storing huge datasets of different formatted data reliably on its file system named Hadoop File System (HDFS) and to process the data stored on HDFS using MapReduce programming model. This thesis study is about building a Data Architecture using Hadoop and its related open source distributed frameworks to support a Data flow pipeline on a low commodity hardware. The Data flow components are, sourcing data, storage management on HDFS and data access layer. This study also discuss about a use case to utilize the architecture components. Sqoop, a framework to ingest the structured data from database onto Hadoop and Flume is used to ingest the semi-structured Twitter streaming json data on to HDFS for analysis. The data sourced using Sqoop and Flume have been analyzed using Hive for SQL like analytics and at a higher level of data access layer, Hadoop has been compared with an in memory computing system using Spark. Significant differences in query execution performances have been analyzed when working with Hadoop and Spark frameworks. This integration helps for ingesting huge Volumes of streaming json Variety data to derive better Value based analytics using Hive and ...