UNT Libraries - 5 Matching Results

Search Results

Purification and Characterization of Proteolytic Aspartate Transcarbamoylase (ATCase) from Burkholderia cepacia 25416 and Construction of a pyrB1 Knock-out Mutant
Burkholderia cepacia is a common soil bacterium of significance in agriculture and bioremediation. B. cepacia is also an opportunistic pathogen of humans causing highly communicable pulmonary infections in cystic fibrosis and immunocompromized patients. The pyrB gene encoding ATCase was cloned and ATCase was purified by the glutathione S-transferase gene fusion system. The ATCase in B. cepacia has been previously classified as a class A enzyme by Bethell and Jones. ATCase activity gels showed that B. cepacia contained a holoenzyme pyrBC complex of 550 kDa comprised of 47 kDa pyrB and 45 kDa pyrC subunits. In the course of purifying the enzyme, trimeric subunits of 140 kDa and 120 kDa were observed as well as a unique proteolysis of the enzyme. The 47 kDa ATCase subunits were cleaved to 40 kDa proteins, which still demonstrated high activity as trimers. The proteolysis site is between Ser74 and Val75 residues. To confirm this, we converted the Ser74 residue to an Ala and to an Arg by site-directed mutagenesis. After this primary sequence changed, the proteolysis of ATCase was not observed. To further investigate the characteristics of B. cepacia pyrB gene, a pyrB knock-out (pyrB-) was constructed by in vitro mutagenesis. In the assay, the 550 kDa holoenzyme and 140 kDa and 120 kDa trimers disappeared and were replaced with a previously unseen 480 kDa holoenzyme pyrB- strain. The results suggest that B. cepacia has two genes that encode ATCase. ATC1 is constitutive and ATC2 is expressed only in the absence of ATC1 activity. To check for the virulence of these two strains, a eukaryotic model virulence test was performed using Caenorhabditis elegans (C. elegans). The pyrB1+pyrB2+ (wild type) B cepacia killed the nematode but pyrB1-pyrB2+ B. cepacia had lost its virulence against C. elegans. This suggests that ATC1 (pyrB1) is involved in virulence ...
Callus Development and Organogenesis in Cultured Explants of Cowpea (Vigna unguiculata (L.) Walp
Cowpea, Vigna unguiculata (L.) Walp is an excellent source of protein, vitamins and minerals and a major food crop many parts of Africa. Optimal production levels are hampered by insect pests and diseases. Biotechnological techniques such as tissue culture and genetic engineering can aid in the development of varieties with resistance to insect pests and diseases. The objective of this study was to investigate conditions necessary for the development of a reproducible tissue culture system that can be applied to regenerate transformed cells from culture. The in vitro manipulation of cowpea using Murashige and Skoog (MS) medium, auxins and cytokinins resulted in the formation of callus and rhizogenesis. Calli that were formed were separated into six classes based on color and texture. Yellowish friable callus, yellowish compact, soft yellowish callus and green and white were composed of largely vacuolated cells and were non-regenerative. Friable green callus was the most prevalent callus type and could form of roots in some hormone combinations. Green spots were formed on hard compact green callus. The green spots became nodular, forming root primordia and ultimately giving rise to roots. None of the six calli types gave rise to the formation of shoots. Embryogenic callus was induced from cowpea explants cultured on MS medium supplemented with dicamba and picloram. Embryogenic suspension cultures were initiated from callus induced on MS supplemented with 3.0 mg/L dicamba or picloram and conditions for maintenance of embryogenic suspension cultures were evaluated. Somatic embryos were formed in suspension cultures. Attempts to convert and germinate the somatic embryos resulted in the formation of callus or formation of appendages on the somatic embryos or in the death of the embryos. The appendages formed roots on prolonged culture. Further research is needed to determine appropriate optimal conditions for embryo conversion and germination and ultimately plant ...
Isolation of a Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production
The pyrimidine biosynthetic pathway is an essential pathway for most organisms. Previous research on the pyrimidine pathway in Pseudomonas aeruginosa (PAO1) has shown that a block in the third step of the pathway resulted in both a requirement for exogenous pyrimidines and decreased ability to produce virulence factors. In this work an organism with a mutation in the second step of the pathway, aspartate transcarbamoylase (ATCase), was created. Assays for pyrimidine intermediates, and virulence factors were performed. Results showed that the production of pigments, haemolysin, and rhamnolipids were significantly decreased from PAO1. Elastase and casein protease production were also moderately decreased. In the Caenorhabditis elegans infection model the nematodes fed the ATCase mutant had increased mortality, as compared to nematodes fed wild type bacteria. These findings lend support to the hypothesis that changes in the pyrimidine biosynthetic pathway contribute to the organism's ability to effect pathogenicity.
Bacterial Cyanide Assimilation: Pterin Cofactor and Enzymatic Requirements for Substrate Oxidation
Utilization of cyanide as the sole nitrogen source by Pseudomonas fluorescens NCIMB 11764 (Pf11764) occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated oxygenolytically by an enzyme referred to as cyanide oxygenase (CNO), which exhibits properties of a pterin-dependent hydroxylase. The pterin requirement for Pf11764 CNO was satisfied by supplying either the fully (tetrahydro) or partially (dihydro) reduced forms of various pterin compounds at catalytic concentrations (0.5 ┬ÁM). These compounds included, for example, biopterin, monapterin and neopterin, all of which were also identified in cell extracts. A related CNO-mediated mechanism of cyanide utilization was identified in cyanide-degrading P. putida BCN3. This conclusion was based on (i) the recovery of CO2 and NH3 as enzymatic reaction products, (ii) the dependency of substrate conversion on both O2 and NADH, and (iiii) utilization of cyanide, O2 and NADH in a 1:1:1 reaction stoichiometry. In contrast to findings reported for Pf11764, it was not possible to demonstrate a need for exogenously added pterin as a cofactor for the PpBCN3 enzyme system. However, results which showed that cells of PpBCN3 contained approximately seven times the amount of pterin as Pf11764 (of which a significant portion was protein-bound) were interpreted as indicating that sufficient bound CNO-cofactor exists, thus eliminating any need for a supplemental source.
Cyanide Assimilation in Pseudomonas Fluorescens: Characterization of Cyanide Oxygenase as a Pterin-Dependent Multicomponent Enzyme Complex
Cyanide utilization in Pseudomonas fluorescens NCIMB 11764 occurs via oxidative conversion to carbon dioxide and ammonia, the latter satisfying the nitrogen requirement. Substrate attack is initiated by an enzyme referred to as cyanide oxygenase (CNO), previously shown to require components in both high (H) (>30 kDa) and low (L) (<10 kDa) molecular weight cell fractions. In this study, tetrahydrobiopterin (H4biopterin) was identified as a cofactor in fraction L, thus making CNO appear as a pterin- dependent hydroxylase. CNO was purified 150-fold (specific activity 0.9 U/mg) and quantitatively converted cyanide to formate and ammonia as reaction products. When coupled with formate dehydrogenase, the complete enzymatic system for cyanide oxidation to carbon dioxide and ammonia was reconstituted. CNO was found to be an aggregate of known enzymes that included NADH oxidase (Nox), NADH peroxidase (Npx), cyanide dihydratase (CynD) and carbonic anhydrase (CA). A complex multi-step reaction mechanism is proposed in which Nox generates hydrogen peroxide which in turn is utilized by Npx to catalyze the oxygenation of cyanide to formamide accompanied by the consumption of one and two molar equivalents of oxygen and NADH, respectively. The further hydrolysis of formamide to ammonia and formate is thought to be mediated by CynD. The role of H4biopterin and of the enzyme CA in the proposed process remains unclear, but the involvement of each in reactive oxygen and radical chemistry is consistent with the proposed formation of such species in the catalytic process. H4biopterin may additionally serve as a protein stabilizing agent along with a protein co-purifying with CynD identified as elongation factor Tu, a known chaperone. At least two of the CNO components (Nox and CynD) are complex oligomeric proteins whose apparent association with Npx and CA appears to be favored in bacterial cells induced with cyanide allowing their purification in toto as a ...