UNT Libraries - 9 Matching Results

Search Results

Hyperspaces of Continua

Description: Several properties of Hausdorff continua are considered in this paper. However, the major emphasis is on developing the properties of the hyperspaces 2x and C(X) of a Hausdorff continuum X. Preliminary definitions and notation are introduced in Chapter I. Chapters II and III deal with the topological structure of the hyperspaces and the concept of topological convergence. Properties of 2x and C(X) are investigated in Chapter IV, while Chapters V and VI are devoted to the Hausdorff continuum X. Chapter VII consists of theorems pertaining to Whitney maps and order arcs in 2x. Examples of C(X) are provided in Chapter VIII. Inverse sequences of Hausdorff continua and of their hyperspaces are considered in Chapter IX.
Date: August 1990
Creator: Simmons, Charlotte

Ádám's Conjecture and Its Generalizations

Description: This paper examines idam's conjuecture and some of its generalizations. In terms of Adam's conjecture, we prove Alspach and Parson's results f or Zpq and ZP2. More generally, we prove Babai's characterization of the CI-property, Palfy's characterization of CI-groups, and Brand's result for Zpr for polynomial isomorphism's. We also prove for the first time a characterization of the CI-property for 1 SG, and prove that Zn is a CI-Pn-group where Pn is the group of permutation polynomials on Z,, and n is square free.
Date: August 1990
Creator: Dobson, Edward T. (Edward Tauscher)

Manifolds, Vector Bundles, and Stiefel-Whitney Classes

Description: The problem of embedding a manifold in Euclidean space is considered. Manifolds are introduced in Chapter I along with other basic definitions and examples. Chapter II contains a proof of the Regular Value Theorem along with the "Easy" Whitney Embedding Theorem. In Chapter III, vector bundles are introduced and some of their properties are discussed. Chapter IV introduces the Stiefel-Whitney classes and the four properties that characterize them. Finally, in Chapter V, the Stiefel-Whitney classes are used to produce a lower bound on the dimension of Euclidean space that is needed to embed real projective space.
Date: August 1990
Creator: Green, Michael Douglas, 1965-

Haar Measure on the Cantor Ternary Set

Description: The purpose of this thesis is to examine certain questions concerning the Cantor ternary set. The second chapter deals with proving that the Cantor ternary set is equivalent to the middle thirds set of [0,1], closed, compact, and has Lebesgue measure zero. Further a proof that the Cantor ternary set is a locally compact, Hausdorff topological group is given. The third chapter is concerned with establishing the existence of a Haar integral on certain topological groups. In particular if G is a locally compact and Hausdorff topological group, then there is a non-zero translation invariant positive linear form on G. The fourth chapter deals with proving that for any Haar integral I on G there exists a unique Haar measure on G that represents I.
Date: August 1990
Creator: Naughton, Gerard P. (Gerard Peter)

Properties of Power Series Rings

Description: This thesis investigates some of the properties of power series rings. The material is divided into three chapters. In Chapter I, some of the basic concepts of rings which are a prerequisite to an understanding of the definitions and theorems which follow are stated. Simple properties of power series rings are developed in Chapter II. Many properties of a ring R are preserved when we attach the indeterminant x to form the power series ring R[[x]]. Further results of power series rings are examined in Chapter III. An important result illustrated in this chapter is that power series rings possess some of the properties of rings of polynomials.
Date: August 1990
Creator: O'Brien, Rita Marie

Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Description: In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
Date: December 1990
Creator: Ali, Ismail, 1961-

Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

Description: The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), i.e., the weak density of a homogeneous complete Boolean algebra B is at least as big as the cellularity. Also in this chapter, we introduce discernible sets. We prove that a discernible set of cardinality no greater than c(B) cannot be weakly dense. In chapter VI, we prove the main result of this dissertation, i.e., d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}). In chapter VII, we list some unsolved problems concerning this dissertation.
Date: August 1990
Creator: Bozeman, Alan Kyle

Explicit Multidimensional Solitary Waves

Description: In this paper we construct explicit examples of solutions to certain nonlinear wave equations. These semilinear equations are the simplest equations known to possess localized solitary waves in more that one spatial dimension. We construct explicit localized standing wave solutions, which generate multidimensional localized traveling solitary waves under the action of velocity boosts. We study the case of two spatial dimensions and a piecewise-linear nonlinearity. We obtain a large subset of the infinite family of standing waves, and we exhibit several interesting features of the family. Our solutions include solitary waves that carry nonzero angular momenta in their rest frames. The spatial profiles of these solutions also furnish examples of symmetry breaking for nonlinear elliptic equations.
Date: August 1990
Creator: King, Gregory B. (Gregory Blaine)

Homotopies and Deformation Retracts

Description: This paper introduces the background concepts necessary to develop a detailed proof of a theorem by Ralph H. Fox which states that two topological spaces are the same homotopy type if and only if both are deformation retracts of a third space, the mapping cylinder. The concepts of homotopy and deformation are introduced in chapter 2, and retraction and deformation retract are defined in chapter 3. Chapter 4 develops the idea of the mapping cylinder, and the proof is completed. Three special cases are examined in chapter 5.
Date: December 1990
Creator: Stark, William D. (William David)