UNT Libraries - 9 Matching Results

Search Results

Finite Dimensional Vector Space

Description: The object of this thesis is to examine properties of an abstract vector space of finite dimension n. The properties of the set of complex numbers are assumed, and the definition of a field and of an abelian group are not stated, although reference to these systems is made.
Date: August 1960
Creator: Power, Billy Joe

Some Diophantine Equations

Description: This paper will be devoted to an examination of several general and specific equations and systems of equations of the diophantine type. Only algebraic equations with integral coefficients, not all zero, will considered. The elementary properties of the integers will be assumed.
Date: January 1960
Creator: Pressly, Kirby Smith

T-Functions

Description: The main purpose of this paper is to make a detailed study of a certain class T of complex functions. The functions of the class T have a special mapping property and are meromorphic in every region. As an application of this study, certain elementary functions are defined and studied in terms of a special T-function.
Date: June 1960
Creator: Barlow, John Rice

Topological Groups

Description: The notion of a topological group follows naturally from a combination of the properties of a group and a topological space. Since a group consists of a set G of elements which may be either finite or infinite and since this is also common to a topological space, a question is opened as to whether or not it is possible to assign a topology to a set of elements which form a group under a certain operation. Now it is possible to assign a topology to any set of elements if no restriction is placed on the topology assigned and hence this study would be of little value from the standpoint of the group itself. If however it is required that the group operation be continuous in the topological space then a very interesting theory is developed.
Date: May 1960
Creator: Carry, Laroy Ray

A Set of Axioms for a Topological Space

Description: Axioms for a topological space are generally based on neighborhoods where "neighborhood" is an undefined term. Then, limit points are defined in terms of neighborhoods. However, limit points seem to be the basic concept of a topological space, rather than neighborhoods. For this reason, it will be attempted to state a set of axioms for a topological space, using limit point as the undefined concept, and to delete the idea of neighborhoods from the theory.
Date: August 1960
Creator: Batcha, Joseph Patrick