UNT Libraries - 3 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Mechanical Properties of Polymer Modified Mortar

Description: The mechanical properties of the polymer-modified mortar are markedly improved over conventional cement mortar. We utilized recycled ABS in powder form and a polymer latex emulsion, polymer percentage ranges from 0 to 25 percent by polymer/cement ratio were investigated. The mechanical properties investigated were compression strength and adhesion strength. Compression strength effects did not have an impact on adhesion strength. Adhesion strength was calculated with pullout testing apparatus designed by the author. Results indicate that recycled ABS had a lower adhesive strength than the acrylic latex emulsion and the base mortar, but did increase in adhesive strength when mixed with maleic-anhydride. The adhesive strength was investigated for a Fiber Reinforced Polymer (FRP) made of an "E" glass fiber that is a continuous strand roving oriented and pre-tensioned longitudinally in an isopthalic polyester matrix material. The FRP rebar was compared to standard steel rebars, and found that the standard steel corrugated rebar had a higher adhesive strength, due to mechanical interlocking. This was clarified by measurements using a smooth steel rebar. Characterization of the polymer-modified mortar was conducted by pore analysis and scanning electron microscopy. Scanning Electron Microscopy was implemented to view the polymer particles, the cement fibrils formed by the hydration, and to prove Ohama's theory of network structure.
Date: August 2002
Creator: Palos, Artemio

Thermal, Electrical, and Structural Analysis of Graphite Foam

Description: A graphite foam was developed at Oak Ridge National Laboratory (ORNL) by Dr. James Klett and license was granted to POCO Graphite, Inc. to manufacture and market the product as PocoFoam™. Unlike many processes currently used to manufacture carbon foams, this process yields a highly graphitic structure and overcomes many limitations, such as oxidation stabilization, that are routinely encountered in the development of carbon foam materials. The structure, thermal properties, electrical resistivity, isotropy, and density uniformity of PocoFoam™ were evaluated. These properties and characteristics of PocoFoam™ are compared with natural and synthetic graphite in order to show that, albeit similar, it is unique. Thermal diffusivity and thermal conductivity were derived from Fourier's energy equation. It was determined that PocoFoam™ has the equivalent thermal conductivity of metals routinely used as heat sinks and that thermal diffusivity is as much as four times greater than pure copper and pure aluminum. SEM and XRD results indicate that PocoFoam™ has a high degree of crystalline alignment and near theoretical d spacing that is more typical of natural flake graphite than synthetic graphite. PocoFoam™ is anisotropic, indicating an isotropy factor of 0.5, and may yield higher thermal conductivity at cryogenic temperatures than is observed in polycrystalline graphite.
Date: August 2001
Creator: Morgan, Dwayne Russell

Application of Thermomechanical Characterization Techniques to Bismuth Telluride Based Thermoelectric Materials

Description: The thermoelectric properties of bismuth telluride based thermoelectric (TE) materials are well-characterized, but comparatively little has been published on the thermomechanical properties. In this paper, dynamic mechanical analysis (DMA) and differential scanning calorimetry data for bismuth telluride based TE materials is presented. The TE materials' tan delta values, indicative of viscoelastic energy dissipation modes, approached that of glassy or crystalline polymers, were greater than ten times the tan delta of structural metals, and reflected the anisotropic nature of TE materials. DMA thermal scans showed changes in mechanical properties versus temperature with clear hysteresis effects. These results showed that the application of DMA techniques are useful for evaluation of thermophysical and thermomechanical properties of these TE materials.
Date: August 2002
Creator: White, John B.