UNT Libraries - 4 Matching Results

Search Results

Study of Gate Electrode Materials on High K Dielectrics

Description: This problem in lieu of thesis report presents a study on gate electrode materials on high K dielectrics, including poly-SiGe and Ru. The stability of poly-SiGe in direct contact with Hf silicon-oxynitride (HfSiON) is studied by rapid thermal annealing (RTA), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). By performing a series of RTA treatments we found that as RTA thermal budgets reach 1050 C for 30s, the poly-SiGe layer begins to intermix with the HfSiON film, as observed by TEM. The maximum annealing condition for the Hf0.14Si0.23O0.46N0.17 film to remain stable in contact with poly-SiGe is 1050 C for 20s in high purity N2(99.9%) ambient. We also found that after 1000 C annealing for 60s in a nitrogen ambient, the poly-SiGe crystal phase structure was changed from a columnar structure to a large grain structure. For a metal gate, Ru was studied to determine N2annealing effects on sheet resistance of Ru sample electrodes and electrical characterization of Ru/HfSiOx/Si stack. Results show that a pure Ru metal gate is not a good choice for high k materials since it is hard to etch off, and different annealing conditions can cause large changes in the electrical behavior.
Date: August 2003
Creator: Yao, Chun

Mechanical behavior and performance of injection molded semi-crystalline polymers.

Description: I have used computer simulations to investigate the behavior of polymeric materials at the molecular level. The simulations were performed using the molecular dynamics method with Lennard-Jones potentials defining the interactions between particles in the system. Significant effort was put into the creation of realistic materials on the computer. For this purpose, an algorithm was developed based on the step-wise polymerization process. The resulting computer-generated materials (CGMs) exhibit several features of real materials, such as molecular weight distribution and presence of chain entanglements. The effect of the addition of a liquid crystalline (LC) phase to the flexible matrix was also studied. The concentration and distribution of the second phase (2P) were found to influence the mechanical and tribological properties of the CGMs. The size of the 2P agglomerates was found to have negligible influence on the properties within the studied range. Moreover, although the 2P reinforcement increases the modulus, it favors crack formation and propagation. Regions of high LC concentration exhibit high probability of becoming part of the crack propagation path. Simulations of the tensile deformation under a uniaxial force have shown that the molecular deformation mechanisms developing in the material depend on several variables, such as the magnitude of the force, the force increase rate, and the level of orientation of the chains. Three-dimensional (3D) graphical visualization tools were developed for representation and analysis of the simulation results. These also present interesting educational possibilities. Computer simulations provide us information which is inaccessible experimentally. From the concomitant use of simulations and experiments, a better understanding of the molecular phenomena that take place during deformation of polymers has been established.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2003
Creator: Simoes, Ricardo J. F.

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among materials, but more important, aided the mapping of the elastic and plastic contributions. These are essential concepts in fracture analysis.
Date: May 2003
Creator: Hernandez-Luna, Alejandro

Characterization of Methyltrimethoxysilane Sol-Gel Polymerization and the Resulting Aerogels.

Description: Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined to be 0.86, which is considerably higher than that predicted by the current accepted theories. Both chemical and physical origins of this high value were suggested. Aerogels dried by supercritical CO2 extraction were characterized by FTIR, 13C and 29Si solid-state NMR and nitrogen sorption. The existence of three residual groups (Si-OH, Si-OCH3, and Si-OC2H5) was confirmed, but their concentrations are very low compared to silica aerogels. The low concentrations of the residual groups, along with the presence of Si-CH3, make MTMS aerogels permanently hydrophobic. To enhance applicability, MTMS aerogels were successfully prepared that demonstrated shrinkage less than 10% after supercritical ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Dong, Hanjiang