UNT Libraries - Browse


Thermophysical, Interfacial and Decomposition Analyses of Polyhydroxyalkanoates introduced against Organic and Inorganic Surfaces

Description: The development of a "cradle-to-cradle" mindset with both material performance during utilization and end of life disposal is a critical need for both ecological and economic considerations. The main limitation to the use of the biopolymers is their mechanical properties. Reinforcements are therefore a good alternative but disposal concerns then arise. Thus the objective of this dissertation is to investigate a biopolymer nanocomposite where the filler is a synthetically prepared layer double hydroxide (inorganic interface); and a biopolymer paper (organic interface) based coating or laminate. The underlying issues driving performance are the packing density of the biopolymer and the interaction with the reinforcement. Since the polyhydroxyalkanoates or PHAs (the biopolymers used for the manufacture of the nanocomposites and coatings) are semicrystalline materials, the glass transition was investigated using dynamic mechanical analysis (DMA) and dielectric spectroscopy (DES), whereas the melt crystallization, cold crystallization and melting points were investigated using differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) spectroscopy was used to estimate crystallinity in the coated material given the low thermal mass of the PHA in the PHA coating. The significant enhancement of the crystallization rate in the PHA nanocomposite was probed using DSC and polarized optical microscopy (POM) and analyzed using Avrami and Lauritzen-Hoffman models. Both composites showed a significant improvement in the mechanical performance obtained by DMA, tensile and impact testing. The degradation and decomposition of the two composites were investigated in low microbial activity soil for the cellulose paper (to slow down the degradation rate that occurs in compost) and in compost. An in-house system according to the American Society for Testing and Materials ASTM D-98 (2003) was engineered. Soil decomposition showed that PHA coating into and onto the cellulose paper can be considered to be a useful method for the assessment of the degradability of the biopolymer. ...
Date: December 2009
Creator: Dagnon, Koffi Leonard

Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Description: Wetting of a substance has been widely investigated since it has many applications to many different fields. Wetting principles can be applied to better select cleans for front end of line (FEOL) and back end of line (BEOL) cleaning processes. These principles can also be used to help determine processes that best repel water from a semiconductor device. It is known that the value of the dielectric constant in an insulator increases when water is absorbed. These contact angle experiments will determine which processes can eliminate water absorption. Wetting is measured by the contact angle between a solid and a liquid. It is known that roughness plays a crucial role on the wetting of a substance. Different surface groups also affect the wetting of a surface. In this work, it was investigated how wetting was affected by different solid surfaces with different chemistries and different roughness. Four different materials were used: silicon; thermally grown silicon dioxide on silicon; chemically vapor deposited (CVD) silicon dioxide on silicon made from tetraethyl orthosilicate (TEOS); and organosilicate glass (OSG) on silicon. The contact angle of each of the samples was measured using a goniometer. The roughness of the samples was measured by atomic force microscopy (AFM). The chemistry of each of the samples were characterized by using X-ray photoelectron spectroscopy (XPS) and grazing angle total attenuated total reflection Fourier transform infrared spectroscopy (FTIR/GATR). Also, the contact angle was measured at the micro scale by using an environmental scanning electron microscope (ESEM).
Date: December 2009
Creator: Martinez, Nelson

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Description: A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Date: August 2009
Creator: Dutta, Madhuri

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Date: August 2009
Creator: Tu, Wei-Lun

Processing, structure property relationships in polymer layer double hydroxide multifunctional nanocomposites

Description: Dan Beaty (1937-2002) was a prolific composer, pianist, researcher, educator, and writer. His large compositional output included chamber works, choral works, songs, orchestral pieces, electronic music, and keyboard works. Beaty was well versed in traditional Western music as well as the more avant-garde and perplexing idioms of the twentieth century. Beaty's compositions reflect the many fascinating, if not always popular, musical trends of his time. His music encompasses styles from serial to jazz, shows compositional influences from Arnold Schoenberg to Indonesian music, and demonstrates thought-provoking and highly intellectual craftsmanship. This document explores several of Beaty's songs through a discussion of the composer's life and compositional process. Songs included in this document are Three Weeks Songs, October, November, A Sappho Lyric, Love Song, That Night When Joy Began, and War Lyrics. This document was written to accompany the author's DMA Lecture-Recital at the University of North Texas. Unfortunately, Beaty's vocal music was never published and is mostly unknown. One goal of the project was to initiate interest in Beaty's songs. Through this document, Lecture-Recital, and additional performances, considerable strides have been made to bring Beaty's songs to new audiences throughout the United States. In addition, the author has received permission from the Beaty family to publish Dan Beaty's songs.
Date: August 2009
Creator: Ogbomo, Sunny Minister

Stimuli-responsive microgels for self-assembled crystalline structures and controlled drug release.

Description: Tissue response to PNIPAM and HPC nanoparticles has been studied by implantation method. The results suggest that both PNIAPM and HPC nanoparticles possess good biocompatibility and they may serve as a good carrier for the applications of controlled delivery. Rheological properties of dispersions of IPN microgels composed of PNIPAM and PAAc have been studied. It is found that the IPN microgel dispersion can undergo a sol-gel transition at temperature above 33°C. In vivo drug release experiments suggest that the gelation procedure creates a diffusion barrier and thus leads to slow release. An emulsion method has been used to grow columnar crystals by mixing PNIPAM microgel dispersions with organic solvents. Effect of both temperature and microgel concentration on formation of columnar crystals has been studied. PNIPAM-co-NMA microgels have been used for the fabrication of crystalline hydrogel films by self-crosslinking microgels. The hydrogel film exhibits an iridescent. The thermally responsive properties and mechanical properties of this film have been studied. Melting temperature (Tm) of colloidal crystals self-assembled with PNIPAM-co-AAc microgels has been investigated as a function of pH, salt concentration and microgel concentration. It is revealed that Tm increases as pH value increases; Tm decreases with increase of salt concentration; Tm increases as microgel concentration increases. Phase behavior of PNIPAM-co-HEAc microgel dispersions has been investigated. It is observed that these microgel dispersions exhibit liquid, crystal, and glass phase. As microgel size increases, crystal phase shifts to low concentration range. As temperature increases, crystal phase shifts to high concentration ranges. These colloidal crystals can be stabilized by NaOH-induced gelation. Effect of NaOH concentration on formation of physical gelation has been investigated.
Date: August 2009
Creator: Zhou, Jun

Long Term Property Prediction of Polyethylene Nanocomposites

Description: The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Mechanical measurements were correlated to the dispersion of the layered silicate particles in the matrix. The nonlinear time dependent creep of the material was analyzed by examining creep and recovery of the films with a Burger model and the Kohlrausch-Williams-Watts (KWW) relation. The effect of stress on the nonlinear behavior of the nanocomposites was investigated by analyzing creep-recovery at different stress levels. Stress-related creep constants and shift factors were determined for the material by using the Schapery nonlinear viscoelastic equation at room temperature. The effect of temperature on the tensile and creep properties of the nanocomposites was analyzed by examining tensile and creep-recovery behavior of ...
Date: December 2008
Creator: Shaito, Ali Al-Abed

Structure and Low-temperature Tribology of Lubricious Nanocrystalline ZnO/Al2O3 Nanolaminates and ZrO2 Monofilms Grown by Atomic Layer Deposition

Description: Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.
Date: December 2008
Creator: Romanes, Maia Castillo

Definition of Brittleness: Connections Between Mechanical and Tribological Properties of Polymers.

Description: The increasing use of polymer-based materials (PBMs) across all types of industry has not been matched by sufficient improvements in understanding of polymer tribology: friction, wear, and lubrication. Further, viscoelasticity of PBMs complicates characterization of their behavior. Using data from micro-scratch testing, it was determined that viscoelastic recovery (healing) in sliding wear is independent of the indenter force within a defined range of load values. Strain hardening in sliding wear was observed for all materials-including polymers and composites with a wide variety of chemical structures-with the exception of polystyrene (PS). The healing in sliding wear was connected to free volume in polymers by using pressure-volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with again the exception of PS. The exceptional behavior of PS has been attributed qualitatively to brittleness. In pursuit of a precise description of such, a quantitative definition of brittleness has been defined in terms of the elongation at break and storage modulus-a combination of parameters derived from both static and dynamic mechanical testing. Furthermore, a relationship between sliding wear recovery and brittleness for all PBMs including PS is demonstrated. The definition of brittleness may be used as a design criterion in selecting PBMs for specific applications, while the connection to free volume improves also predictability of wear behavior.
Date: August 2008
Creator: Hagg Lobland, Haley E.

Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Description: Dual gate MOSFET structures such as FinFETs are widely regarded as the most promising option for continued scaling of silicon based transistors after 2010. This work examines key process modules that enable reduction of both device area and fin width beyond requirements for the 16nm node. Because aggressively scaled FinFET structures suffer significantly degraded device performance due to large source/drain series resistance (RS/D), several methods to mitigate RS/D such as maximizing contact area, silicide engineering, and epitaxially raised S/D have been evaluated.
Date: May 2008
Creator: Smith, Casey Eben

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and higher toughness were found with increasing oligomer content; thus in this case there was a correlation between good mechanical and improved tribological properties. The results indicated that increasing toughness and formation of a transfer film contribute to improved tribological performances.
Date: May 2008
Creator: Chonkaew, Wunpen

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter is dependant on the aforesaid parameters. These pile-ups affect the mechanical properties like elastic modulus and hardness measurements which are pivotal variables for specific applications in micro and nano scale devices.
Date: May 2008
Creator: Srivastava, Ashish Kumar

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Date: May 2008
Creator: Kosuri, Divya

State accountability ratings as related to district size and diversity.

Description: All Texas school districts were examined to determine the relationship of district size and diversity to the accountability ratings of selected Texas school districts and the implications of including all data in the accountability rating system. Eight large districts and 12 small districts were matched demographically utilizing data from the 2003-2004 school year. Information from the Texas Education Agency was accessed over 2003-2004 and 2004-2005. The ratings were found to be lowered from Recognized to Academically Acceptable with the inclusion of these groups 6 out of 20 times. These findings indicate that the Texas accountability system, in its current structure, excludes certain students based upon race and economic status and is not in compliance with what the law intended. This study should be replicated on a larger scale to assess its validity for a larger sample of small districts. Equity among states should be examined to provide information for a nationwide accountability system.
Date: May 2008
Creator: Starrett, Teresa M.

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Description: Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag and Ni particles causes an increase in the wear loss volume while Al can reduce the wear for both polymeric matrices.
Date: December 2007
Creator: Olea Mejia, Oscar Fernando

Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Description: Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Micrographs of the samples from the SEM revealed that the cell size of the foams reduced and increased with increase in MB concentration and increase in the foaming temperature respectively. Mechanical tests; tensile, compression, shear and impact were performed on the foamed samples. It was noted that between the 20-25% wt. MB, there was an improvement in the mechanical properties. This suggests that at these compositions, there is a high interaction between PCL and MB at the molecular level compared to other compositions. The results indicate that green processing of polymer blends is viable.
Date: December 2007
Creator: Ogunsona, Emmanuel Olusegun

Trapping of hydrogen in Hf-based high κ dielectric thin films for advanced CMOS applications.

Description: In recent years, advanced high κ gate dielectrics are under serious consideration to replace SiO2 and SiON in semiconductor industry. Hafnium-based dielectrics such as hafnium oxides, oxynitrides and Hf-based silicates/nitrided silicates are emerging as some of the most promising alternatives to SiO2/SiON gate dielectrics in complementary metal oxide semiconductor (CMOS) devices. Extensive efforts have been taken to understand the effects of hydrogen impurities in semiconductors and its behavior such as incorporation, diffusion, trapping and release with the aim of controlling and using it to optimize the performance of electronic device structures. In this dissertation, a systematic study of hydrogen trapping and the role of carbon impurities in various alternate gate dielectric candidates, HfO2/Si, HfxSi1-xO2/Si, HfON/Si and HfON(C)/Si is presented. It has been shown that processing of high κ dielectrics may lead to some crystallization issues. Rutherford backscattering spectroscopy (RBS) for measuring oxygen deficiencies, elastic recoil detection analysis (ERDA) for quantifying hydrogen and nuclear reaction analysis (NRA) for quantifying carbon, X-ray diffraction (XRD) for measuring degree of crystallinity and X-ray photoelectron spectroscopy (XPS) were used to characterize these thin dielectric materials. ERDA data are used to characterize the evolution of hydrogen during annealing in hydrogen ambient in combination with preprocessing in oxygen and nitrogen.
Date: December 2007
Creator: Ukirde, Vaishali

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Description: The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have been compared and exhibit excellent agreement.
Date: August 2007
Creator: Diercks, David Robert

Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Description: While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
Date: May 2007
Creator: Puthucode Balakrishnan, Anantharamakrishnan

Bulk and Interfacial Effects on Density in Polymer Nanocomposites

Description: The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-platelet interface on permeability of polymer nanocomposites is investigated. Nanocomposites of nylon, PET, and PEN were processed by extrusion. Montmorillonite layered silicate (MLS) in a range of concentrations from 1 to 5% was blended with all three resins. Dispersion of the MLS in the matrix was investigated by using one or a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Variation in bulk density via crystallization was analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy. Interfacial densification was investigated using force modulation atomic force microscopy (AFM) and ellipsometry. Mechanical properties are reported. Permeability of all films was measured in an in-house built permeability measurement system. The effect of polymer orientation and induced defects on permeability was investigated using biaxially stretched, small and large cycle fatigue samples of PET and nylon nanocomposites. The effect of annealing in nylon and nanocomposites was also investigated. The measured permeability was compared to predicted permeability by considering the MLS as an ideal dispersion and the matrix as a system with concentration dependent crystallinity.
Date: May 2007
Creator: Sahu, Laxmi Kumari

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Description: Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior wear resistance than Ti-6Al-4V.
Date: May 2007
Creator: Samuel, Sonia

Low Temperature Polymeric Precursor Derived Zinc Oxide Thin Films

Description: Zinc oxide (ZnO) is a versatile environmentally benign II-VI direct wide band gap semiconductor with several technologically plausible applications such as transparent conducting oxide in flat panel and flexible displays. Hence, ZnO thin films have to be processed below the glass transition temperatures of polymeric substrates used in flexible displays. ZnO thin films were synthesized via aqueous polymeric precursor process by different metallic salt routes using ethylene glycol, glycerol, citric acid, and ethylene diamine tetraacetic acid (EDTA) as chelating agents. ZnO thin films, derived from ethylene glycol based polymeric precursor, exhibit flower-like morphology whereas thin films derived of other precursors illustrate crack free nanocrystalline films. ZnO thin films on sapphire substrates show an increase in preferential orientation along the (002) plane with increase in annealing temperature. The polymeric precursors have also been used in fabricating maskless patterned ZnO thin films in a single step using the commercial Maskless Mesoscale Materials Deposition system.
Date: December 2006
Creator: Choppali, Uma

Study of lead sorption on magnetite at high temperatures.

Description: Lead's uptake on magnetite has been quantitatively evaluated in the present study at a temperature of 200°C and pH of 8.5 with lead concentrations ranging from 5 ppm to175 ppm by equilibrium adsorption isotherms. The pH independent sorption behavior suggested lead sorption due to pH independent permanent charge through weak electrostatic, non-specific attraction where cations are sorbed on the cation exchange sites. The permanent negative charge could be a consequence of lead substitution which is supported by increase in the lattice parameter values from the X-ray diffraction (XRD) results. Differential scanning calorimetry (DSC/TGA) results showed an increase of exothermic (magnetite to maghemite transformation) peak indicating substitution of lead ions due to which there is retardation in the phase transformation. Presence of outer sphere complexes and physical sorption is further supported by Fourier transformed infrared spectroscopy (FTIR). None of the results suggested chemisorption of lead on magnetite.
Date: December 2006
Creator: Paliwal, Vaishali

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in chemical vapor depositions (CVD) of these dielectrics.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2006
Creator: Ukirde, Vaishali