UNT Libraries - Browse


Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing

Description: The cold-formed steel framed shear walls with steel sheets and wood-based sheathing are both code approved lateral force resisting system in light-framed construction. In the United States, the current design approach for cold-formed steel shear walls is capacity-based and developed from full-scale tests. The available design provisions provide nominal shear strength for only limited wall configurations. This research focused on the development of analytical models of cold-formed steel framed shear walls with steel sheet and wood-based sheathing to predict the nominal shear strength of the walls at their ultimate capacity level. Effective strip model was developed to predict the nominal shear strength of cold-formed steel framed steel sheet shear walls. The proposed design approach is based on a tension field action of the sheathing, shear capacity of sheathing-to-framing fastener connections, fastener spacing, wall aspect ratio, and material properties. A total of 142 full scale test data was used to verify the proposed design method and the supporting design equations. The proposed design approach shows consistent agreement with the test results and the AISI published nominal strength values. Simplified nominal strength model was developed to predict the nominal shear strength of cold-formed steel framed wood-based panel shear walls. The nominal shear strength is determined based on the shear capacity of individual sheathing-to-framing connections, wall height, and locations of sheathing-to-framing fasteners. The proposed design approach shows a good agreement with 179 full scale shear wall test data. This analytical method requires some efforts in testing of sheathing-to-framing connections to determine their ultimate shear capacity. However, if appropriate sheathing-to-framing connection capacities are provided, the proposed design method provides designers with an analytical tool to determine the nominal strength of the shear walls without conducting full-scale tests.
Date: May 2013
Creator: Yanagi, Noritsugu

Cold-formed Steel Framed Shear Wall Sheathed with Corrugated Sheet Steel

Description: Incombustibility is one important advantage of the sheet steel sheathed shear wall over wood panel sheathed shear wall. Compared to shear wall sheathed with plywood and OSB panel, shear wall sheathed with flat sheet steel behaved lower shear strength. Although shear wall sheathed with corrugated sheet steel exhibited high nominal strength and high stiffness, the shear wall usually behaved lower ductility resulting from brittle failure at the connection between the sheathing to frames. This research is aimed at developing modifications on the corrugated sheathing to improve the ductility of the shear wall as well as derive practical response modification factor by establishing correct relationship between ductility factor ? and response modification factor R. Totally 21 monotonic and cyclic full-scale shear wall tests were conducted during the winter break in 2012 by the author in NUCONSTEEL Materials Testing Laboratory in the University of North Texas. The research investigated nineteen 8 ft. × 4 ft. shear walls with 68 mil frames and 27 mil corrugation sheet steel in 11 configurations and two more shear walls sheathed with 6/17-in.OSB and 15/32-in. plywood respectively for comparison. The shear walls, which were in some special cutting arrangement patterns, performed better under lateral load conditions according to the behavior of ductility and shear strength and could be used as lateral system in construction.
Date: May 2013
Creator: Yu, Guowang

Bearing Strength of Cold Formed Steel Bolted Connections in Trusses

Description: The existing design provision in North American Specification for Cold- Formed Steel Structural Member (AISI S100) for the bearing strength of bolted connections were developed from tests on bolted connected sheets which were restrained by bolt nut and head with or without washers. However, in the cold-formed assemblies, particularly in trusses, the single bolt goes through both sides of the connected sections, making the connected sheets on each side unrestrained. the warping of the unrestrained sheet may reduce the bearing strength of the bolted connection. This research investigates the behavior and strength of bearing failure in bolted connections in cold-formed steel trusses. Tensile tests were conducted on trusses connections with various material thicknesses. It was found that the AISI S100 works well for thick connections but provides unconservative predictions for thin materials. Based on the experimental results, a modified bearing strength method is proposed for calculating the bearing strength of bolted truss connections. the proposed method can be used for any cold-formed steel connections with unrestrained sheet.
Date: May 2012
Creator: Panyanouvong, Mark