UNT Libraries - 8 Matching Results

Search Results

Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach

Description: In the past few years, the study of electrical activity in the brain and its interactions with the body has become popular among researchers. One of the hottest topics related to brain activity is the epileptic seizure prediction. Currently, there are several techniques on how to predict a seizure; however, most of the techniques found in research papers are just mathematical models and not system implementations. The seizure prediction approach proposed in this thesis paper is achieved using the EMOTIV Epoc+ headset, MATLAB, and LabVIEW as the analog and digital signal processing devices. In addition, this thesis project incorporates the use of the Hilbert Huang transform (HHT) method to obtain intrinsic mode functions (IMF) and instantaneous frequency components of the transform. From the IMFs, features as variation coefficient (VC) and fluctuation indexes (FI) are extracted to feed a support vector machine that classifies the EEG data as pre-ictal and non-ictal EEGs. Outstanding patterns in non-ictal and pre-ictal are observed and demonstrated by significant differences between both types of EEG signals. In other words, a classification of EEG signals according to a category can be achieved proving that an epileptic seizure prediction technology has a future in engineering and biotechnology fields.
Date: December 2016
Creator: Medina, Oscar F

Applied Real-Time Integrated Distributed Control Systems: An Industrial Overview and an Implemented Laboratory Case Study

Description: This thesis dissertation mainly compares and investigates laboratory study of different implementation methodologies of applied control systems and how they can be adopted in industrial, as well as commercial, automation applications. Namely the research paper aims to assess or evaluate eventual feedback control loops' performance and robustness over multiple conventional or state-of-the-art technologies in the field of applied industrial automation and instrumentation by implementing a laboratory case study setup: the ball on beam system. Hence, the paper tries to close the gap between industry and academia by: first, conducting a historical study and background information of main evolutional and technological eras in the field of industrial process control automation and instrumentation. Then, some related basic theoretical as well as practical concepts are reviewed in Chapter 2 of the report before displaying the detailed design. After that, the next Chapter, analyses the ball on beam control system problem as the case studied in the context of this research through reviewing previous literature, modeling and simulation. The following Chapter details the proposed design and implementation of the ball on beam case study as if it is under the introduced distributed industrial automation architecture. Finally, Chapter 5 concludes this work by listing several points leaned, remarks, and observations, and stating possible development and the future vision of this research.
Date: August 2016
Creator: Zaitouni, Wael K

The Design and Implementation of an Effective Vision-Based Leader-Follower Tracking Algorithm Using PI Camera

Description: The thesis implements a vision-based leader-follower tracking algorithm on a ground robot system. One camera is the only sensor installed the leader-follower system and is mounted on the follower. One sphere is the only feature installed on the leader. The camera identifies the sphere in the openCV Library and calculates the relative position between the follower and leader using the area and position of the sphere in the camera frame. A P controller for the follower and a P controller for the camera heading are built. The vision-based leader-follower tracking algorithm is verified according to the simulation and implementation.
Date: August 2016
Creator: Li, Songwei

Measurement and Analysis of Indoor Air Quality Conditions

Description: More than 80% of the people in urban regions and about 98% of cities in low and middle income countries have poor air quality according to the World Health Organization. People living in such environment suffer from many disorders like a headache, shortness of breath or even the worst diseases like lung cancer, asthma etc. The main objective of the thesis is to create awareness about the air quality and the factors that are causing air pollution to the people which is really important and provide tools at their convenience to measure and analyze the air quality. Taking real time air quality scenarios, various experiments were made using efficient sensors to study both the indoor and outdoor air quality. These experimental results will eventually help people to understand air quality better. An outdoor air quality data measurement system is developed in this research using Python programming to provide people an opportunity to retrieve and manage the air quality data and get the concentrations of the leading pollutants. The entire designing of the program is made to run with the help of a graphical user interface tool for the user, as user convenience is considered as one of the objectives of the thesis. A graphical user interface is made for the user convenience to visualize graphically the data from the database. The designed system is tested and used for the measurement and analysis of the outdoor air quality. This data will be available in the database so it can be used for analyzing the air quality data for several days or months or years. Using the GrayWolf system and the designed outdoor air quality data measurement system, both the indoor and outdoor air quality was measured to analyze and correlate.
Date: August 2016
Creator: Chidurala, Veena

The Modeling and Simulation of EV3 Motor Dynamics

Description: This paper describes a procedure to find the transfer function for the Lego Mindstorms Ev3. Lego Mindstorms Ev3 can serve as the platform for a system modeling and a controller design course. It is economical and accessible. It is also very compatible with Matlab and Simulink. This platform can be used for concepts of modeling, feedback, and controller design. The main approach in this work focuses on the closed loop instead of open loop. Although this approach turns the problem into a more complicated puzzle, it reveals more details. In this work, different techniques have been used, such as time domain, root locus, and least square estimation. Different tools have also been utilized such as Matlab SISO tool, the Matlab System Identification tool, and Simulink. These methods and implementations assisted to acquire different types of transfer functions for the system. By simulating the transfer functions and comparing them with experimental studies, the matching scores were calculated to decide on the best transfer function. Finding the finest transfer function for this gadget enables us to prepare diverse practical undergraduate and graduate curricula.
Date: August 2016
Creator: Norouzi Kandalan, Roya

Wireless Signal Conditioning

Description: This thesis presents a new approach to extend and reduce the transmission range in wireless systems. Conditioning is defined as purposeful electromagnetic interference that affects a wireless signal as it propagates through the air. This interference can be used constructively to enhance a signal and increase its energy, or destructively to reduce energy. The constraints and limitations of the technology are described as a system model, and a flow chart is used to describe the circuit process. Remaining theoretical in nature, practical circuit implementations are foregone in the interest of elementary simulations depicting the interactions of modulated signals as they experience phase mismatch. Amplitude modulation and frequency modulation are explored with using both positive and negative conditioning, and conclusions to whether one is more suitable than the other are made.
Date: August 2016
Creator: Valero, Daniel

AirSniffer: A Smartphone-Based Sensor Module for Personal Micro-Climate Monitoring

Description: Environmental factors can have a significant impact on an individual's health and well-being, and a primary characteristic of environments is air quality. Air sensing equipment is available to the public, but it is often expensive,stationary, or unusable for persons without technical expertise. The goal of this project is to develop an inexpensive and portable sensor module for public use. The system is capable of measuring temperature in Celsius and Fahrenheit, heat index, relative humidity, and carbon dioxide concentration. The sensor module, referred to as the "sniffer," consists of a printed circuit board that interconnects a carbon dioxide sensor, a temperature/humidity sensor, an Arduino microcontroller, and a Bluetooth module. The sniffer is small enough to be worn as a pendant or a belt attachment, and it is rugged enough to consistently collect and transmit data to a user's smartphone throughout their workday. The accompanying smartphone app uses Bluetooth and GPS hardware to collect data and affix samples with a time stamp and GPS coordinates. The accumulated sensor data is saved to a file on the user's phone, which is then examined on a standard computer.
Date: May 2016
Creator: Smith, Jeffrey Paul

Implementation of an Unmanned Aerial Vehicle for New Generation Peterbilt Trucks

Description: As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.
Date: May 2016
Creator: Srinivasan K, Venkatesh