UNT Libraries - Browse


Preliminary design of a cryogenic thermoelectric generator.

Description: A cryogenic thermoelectric generator is proposed to increase the efficiency of a vehicle propulsion system that uses liquid nitrogen as its fuel. The proposed design captures some of the heat required for vaporizing or initial heating of the liquid nitrogen to produce electricity. The thermoelectric generator uses pressurized liquid nitrogen as its cold reservoir and ambient air as the high-temperature reservoir to generate power. This study concentrated on the selection of thermoelectric materials whose properties would result in the highest efficiency over the operating temperature range and on estimating the initial size of the generator. The preliminary selection of materials is based upon their figure of merit at the operating temperatures. The results of this preliminary design investigation of the cryogenic thermoelectric generator indicate that sufficient additional energy can be used to increase overall efficiency of the thermodynamic cycle of a vehicle propulsion system.
Date: May 2007
Creator: Sivapurapu, Sai Vinay Kumar

MBE Growth and Instrumentation

Description: This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree for future use. Unattended automation can be achieved by designing a control system that monitors the growth in real-time and compares it with the data recorded from the LabVIEW program from the previous growth and adjusts the growth parameters automatically thereby growing accurate device structures.
Date: May 2006
Creator: Tarigopula, Sriteja

Effects of a Surface Engineered Metallic Coating on Elastomeric Valve Stem Seal Leakage

Description: Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
Date: December 2000
Creator: Taylor, John Abner

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Description: Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the generated equations.
Date: December 2005
Creator: Tummala, Dinesh

Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system.

Description: The objective of this research is to investigate different propagation models to determine if specified models accurately predict received signal levels for short path 900 MHz spread spectrum radio systems. The City of Denton, Texas provided data and physical facilities used in the course of this study. The literature review indicates that propagation models have not been studied specifically for short path spread spectrum radio systems. This work should provide guidelines and be a useful example for planning and implementing such radio systems. The propagation model involves the following considerations: analysis of intervening terrain, path length, and fixed system gains and losses.
Date: May 2006
Creator: Urban, Brian L.

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Description: The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
Date: December 1997
Creator: Velpuri, Seshagirirao V.

Surface Plasmon Based Nanophotonic Optical Emitters

Description: Group- III nitride based semiconductors have emerged as the leading material for short wavelength optoelectronic devices. The InGaN alloy system forms a continuous and direct bandgap semiconductor spanning ultraviolet (UV) to blue/green wavelengths. An ideal and highly efficient light-emitting device can be designed by enhancing the spontaneous emission rate. This thesis deals with the design and fabrication of a visible light-emitting device using GaN/InGaN single quantum well (SQW) system with enhanced spontaneous emission. To increase the emission efficiency, layers of different metals, usually noble metals like silver, gold and aluminum are deposited on GaN/InGaN SQWs using metal evaporator. Surface characterization of metal-coated GaN/InGaN SQW samples was carried out using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Photoluminescence is used as a tool for optical characterization to study the enhancement in the light emitting structures. This thesis also compares characteristics of different metals on GaN/InGaN SQW system thus allowing selection of the most appropriate material for a particular application. It was found out that photons from the light emitter couple more to the surface plasmons if the bandgap of former is close to the surface plasmon resonant energy of particular metal. Absorption of light due to gold reduces the effective mean path of light emitted from the light emitter and hence quenches the quantum well emission peak compared to the uncoated sample.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2005
Creator: Vemuri, Padma Rekha

Synthesis of cubic boron nitride thin films on silicon substrate using electron beam evaporation.

Description: Cubic boron nitride (cBN) synthesis has gained lot of interest during the past decade as it offers outstanding physical and chemical properties like high hardness, high wear resistance, and chemical inertness. Despite of their excellent properties, every application of cBN is hindered by high compressive stresses and poor adhesion. The cost of equipment is also high in almost all the techniques used so far. This thesis deals with the synthesis of cubic phase of boron nitride on Si (100) wafers using electron beam evaporator, a low cost equipment that is capable of depositing films with reduced stresses. Using this process, need of ion beam employed in ion beam assisted processes can be eliminated thus reducing the surface damage and enhancing the film adhesion. Four sets of samples have been deposited by varying substrate temperature and the deposition time. scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) techniques have been used to determine the structure and composition of the films deposited. X-ray diffraction (XRD) was performed on one of the samples to determine the thickness of the film deposited for the given deposition rate. Several samples showed dendrites being formed as a stage of film formation. It was found that deposition at substrate temperature of 400oC and for a period of one hour yielded high quality cubic boron nitride films.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Vemuri, Prasanna

Determination of the Shelf Life of Aluminum Electrolytic Capacitors.

Description: The aluminum electrolytic capacitor is used extensively in the electric utility industry. A factor limiting the storage of spare capacitors is the integrity of the aluminum oxide dielectric, which over time breaks down contributing to a shelf life currently estimated at one nuclear power electric generating station to be approximately five years. This project examined the electrical characteristics of naturally aged capacitors of several different styles to determine if design parameters were still within limits. Additionally, the effectiveness of a technique known as “Reforming” was examined to determine its impact on those characteristics.
Date: May 2002
Creator: Wynne, Edward McFaddin

Computer Virus Spread Containment Using Feedback Control.

Description: In this research, a security architecture based on the feedback control theory has been proposed. The first loop has been designed, developed and tested. The architecture proposes a feedback model with many controllers located at different stages of network. The controller at each stage gives feedback to the one at higher level and a decision about network security is taken. The first loop implemented in this thesis detects one important anomaly of virus attack, rate of outgoing connection. Though there are other anomalies of a virus attack, rate of outgoing connection is an important one to contain the spread. Based on the feedback model, this symptom is fed back and a state model using queuing theory is developed to delay the connections and slow down the rate of outgoing connections. Upon implementation of this model, whenever an infected machine tries to make connections at a speed not considered safe, the controller kicks in and sends those connections to a delay queue. Because of delaying connections, rate of outgoing connections decrease. Also because of delaying, many connections timeout and get dropped, reducing the spread. PID controller is implemented to decide the number of connections going to safe or suspected queue. Multiple controllers can be implemented to control the parameters like delay and timeout. Control theory analysis is performed on the system to test for stability, controllability, observability. Sensitivity analysis is done to find out the sensitivity of the controller to the delay parameter. The first loop implemented gives feedback to the architecture proposed about symptoms of an attack at the node level. A controller needs to be developed to receive information from different controllers and decision about quarantining needs to be made. This research gives the basic information needed for the controller about what is going on at individual nodes of ...
Date: December 2004
Creator: Yelimeli Guruprasad, Arun