UNT Libraries - 242 Matching Results

Search Results

Improving Digital Circuit Simulation: A Knowledge-Based Approach

Description: This project focuses on a prototype system architecture which integrates features of an event-driven gate-level simulator and features of the multiple expert system architecture, HEARSAY-II. Combining artificial intelligence and simulation techniques, a knowledge-based simulator was designed and constructed to model non-standard circuit behavior. This non-standard circuit behavior is amplified by advances in integrated circuit technology. Currently available digital circuit simulators can not simulate this behavior. Circuit designer expertise on behavioral phenomena is used in the expert system to guide the base simulator by manipulating its events to achieve the desired behavior.
Date: August 1989
Creator: Benavides, John A. (John Anthony)

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

Description: In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by current practices used in BCI App stores and then describe some countermeasures that could be used to mitigate the privacy threats. Also, develop a prototype which gives the BCI app users a choice to restrict their brain signal dynamically.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Bhalotiya, Anuj Arun

Hopfield Networks as an Error Correcting Technique for Speech Recognition

Description: I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Bireddy, Chakradhar

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Date: August 2016
Creator: Bravo-Salgado, Angel D

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature characterizations, and 3) the use of overlapping bigrams as the textual working unit to assist in context analysis and reconstruction.
Date: August 2015
Creator: Bristow, Kelly H.

SEM Predicting Success of Student Global Software Development Teams

Description: The extensive use of global teams to develop software has prompted researchers to investigate various factors that can enhance a team’s performance. While a significant body of research exists on global software teams, previous research has not fully explored the interrelationships and collective impact of various factors on team performance. This study explored a model that added the characteristics of a team’s culture, ability, communication frequencies, response rates, and linguistic categories to a central framework of team performance. Data was collected from two student software development projects that occurred between teams located in the United States, Panama, and Turkey. The data was obtained through online surveys and recorded postings of team activities that occurred throughout the global software development projects. Partial least squares path modeling (PLS-PM) was chosen as the analytic technique to test the model and identify the most influential factors. Individual factors associated with response rates and linguistic characteristics proved to significantly affect a team’s activity related to grade on the project, group cohesion, and the number of messages received and sent. Moreover, an examination of possible latent homogeneous segments in the model supported the existence of differences among groups based on leadership style. Teams with assigned leaders tended to have stronger relationships between linguistic characteristics and team performance factors, while teams with emergent leaders had stronger. Relationships between response rates and team performance factors. The contributions in this dissertation are three fold. 1) Novel analysis techniques using PLS-PM and clustering, 2) Use of new, quantifiable variables in analyzing team activity, 3) Identification of plausible causal indicators for team performance and analysis of the same.
Date: May 2015
Creator: Brooks, Ian Robert

Computerized Analysis of Radiograph Images of Embedded Objects as Applied to Bone Location and Mineral Content Measurement

Description: This investigation dealt with locating and measuring x-ray absorption of radiographic images. The methods developed provide a fast, accurate, minicomputer control, for analysis of embedded objects. A PDP/8 computer system was interfaced with a Joyce Loebl 3CS Microdensitometer and a Leeds & Northrup Recorder. Proposed algorithms for bone location and data smoothing work on a twelve-bit minicomputer. Designs of a software control program and operational procedure are presented. The filter made wedge and limb scans monotonic from minima to maxima. It was tested for various convoluted intervals. Ability to resmooth the same data in multiple passes was tested. An interval size of fifteen works well in one pass.
Date: August 1976
Creator: Buckner, Richard L.

A Graphical, Database-Querying Interface for Casual, Naive Computer Users

Description: This research is concerned with some aspects of the retrieval of information from database systems by casual, naive computer users. A "casual user" is defined as an individual who only wishes to execute queries perhaps once or twice a month, and a "naive user" is someone who has little or no expertise in operating a computer and, more specifically for the purposes of this study, is not practiced at querying a database. The research initially focuses on a specific group of casual, naive users, namely a group of clinicians, and analyzes their characteristics as they pertain to the retrieval of information from a computer database. The characteristics thus elicited are then used to create the requirements for a database interface that would, potentially, be acceptable to this group. An interface having the desired requirements is then proposed. This interface consists, from a user's perspective, of three basic components. A graphical model gives a picture of the database structure. Windows give the ability to view different areas of the database, physically group together items that come under one logical heading and provide the user with immediate access to the data item names used by the system. Finally, a natural language query language provides a means of entering a query in a syntax (that of ordinary English) which is familiar to the user. The graphical model is a logical abstraction of the database. Unlike other database interfaces, it is not constrained by the model (relational, hierarchical, network) underlying the database management system, with the one caveat that the graphical model should not imply any connections which cannot be supported by the management system. Versions of the interface are implemented on both eight-bit and sixteen-bit microcomputers, and testing is conducted in order to validate the acceptability of the interface and to discover the ...
Date: August 1985
Creator: Burgess, Clifford G. (Clifford Grenville)

A Design Approach for Digital Computer Peripheral Controllers, Case Study Design and Construction

Description: The purpose of this project was to describe a novel design approach for a digital computer peripheral controller, then design and construct a case study controller. This document consists of three chapters and an appendix. Chapter II presents the design approach chosen; a variation to a design presented by Charles R. Richards in an article published in Electronics magazine. Richards' approach consists of a finite state machine circuitry controlling all the functions of a controller. The variation to Richards' approach consists of considering the various logically independent processes which a controller carries out and assigning control of each process to a separate finite state machine. The appendix contains the documentation of the design and construction of the controller.
Date: May 1976
Creator: Cabrera, A. L.

DRVBLD: a UNIX Device Driver Builder

Description: New peripheral devices are being developed at an ever increasing rate. Before such accessories can be used in the UNIX environment (UNIX is a trademark of Bell Laboratories), they must be able to communicate with the operating system. This involves writing a device driver for each device. In order to do this, very detailed knowledge is required of both the device to be integrated and the version of UNIX to which it will be attached. The process is long, detailed and prone to subtle problems and errors. This paper presents a menu-driven utility designed to simplify and accelerate the design and implementation of UNIX device drivers by freeing developers from many of the implementation specific low-level details.
Date: May 1992
Creator: Cano, Agustin F.

Practical Cursive Script Recognition

Description: This research focused on the off-line cursive script recognition application. The problem is very large and difficult and there is much room for improvement in every aspect of the problem. Many different aspects of this problem were explored in pursuit of solutions to create a more practical and usable off-line cursive script recognizer than is currently available.
Date: August 1995
Creator: Carroll, Johnny Glen, 1953-

Automated Testing of Interactive Systems

Description: Computer systems which interact with human users to collect, update or provide information are growing more complex. Additionally, users are demanding more thorough testing of all computer systems. Because of the complexity and thoroughness required, automation of interactive systems testing is desirable, especially for functional testing. Many currently available testing tools, like program proving, are impractical for testing large systems. The solution presented here is the development of an automated test system which simulates human users. This system incorporates a high-level programming language, ATLIS. ATLIS programs are compiled and interpretively executed. Programs are selected for execution by operator command, and failures are reported to the operator's console. An audit trail of all activity is provided. This solution provides improved efficiency and effectiveness over conventional testing methods.
Date: May 1977
Creator: Cartwright, Stephen C.

Investigating the Extractive Summarization of Literary Novels

Description: Abstract Due to the vast amount of information we are faced with, summarization has become a critical necessity of everyday human life. Given that a large fraction of the electronic documents available online and elsewhere consist of short texts such as Web pages, news articles, scientific reports, and others, the focus of natural language processing techniques to date has been on the automation of methods targeting short documents. We are witnessing however a change: an increasingly larger number of books become available in electronic format. This means that the need for language processing techniques able to handle very large documents such as books is becoming increasingly important. This thesis addresses the problem of summarization of novels, which are long and complex literary narratives. While there is a significant body of research that has been carried out on the task of automatic text summarization, most of this work has been concerned with the summarization of short documents, with a particular focus on news stories. However, novels are different in both length and genre, and consequently different summarization techniques are required. This thesis attempts to close this gap by analyzing a new domain for summarization, and by building unsupervised and supervised systems that effectively take into account the properties of long documents, and outperform the traditional extractive summarization systems typically addressing news genre.
Date: December 2011
Creator: Ceylan, Hakan

Using Reinforcement Learning in Partial Order Plan Space

Description: Partial order planning is an important approach that solves planning problems without completely specifying the orderings between the actions in the plan. This property provides greater flexibility in executing plans; hence making the partial order planners a preferred choice over other planning methodologies. However, in order to find partially ordered plans, partial order planners perform a search in plan space rather than in space of world states and an uninformed search in plan space leads to poor efficiency. In this thesis, I discuss applying a reinforcement learning method, called First-visit Monte Carlo method, to partial order planning in order to design agents which do not need any training data or heuristics but are still able to make informed decisions in plan space based on experience. Communicating effectively with the agent is crucial in reinforcement learning. I address how this task was accomplished in plan space and the results from an evaluation of a blocks world test bed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2006
Creator: Ceylan, Hakan

Natural Language Interfaces to Databases

Description: Natural language interfaces to databases (NLIDB) are systems that aim to bridge the gap between the languages used by humans and computers, and automatically translate natural language sentences to database queries. This thesis proposes a novel approach to NLIDB, using graph-based models. The system starts by collecting as much information as possible from existing databases and sentences, and transforms this information into a knowledge base for the system. Given a new question, the system will use this knowledge to analyze and translate the sentence into its corresponding database query statement. The graph-based NLIDB system uses English as the natural language, a relational database model, and SQL as the formal query language. In experiments performed with natural language questions ran against a large database containing information about U.S. geography, the system showed good performance compared to the state-of-the-art in the field.
Date: December 2006
Creator: Chandra, Yohan

Measuring Vital Signs Using Smart Phones

Description: Smart phones today have become increasingly popular with the general public for its diverse abilities like navigation, social networking, and multimedia facilities to name a few. These phones are equipped with high end processors, high resolution cameras, built-in sensors like accelerometer, orientation-sensor, light-sensor, and much more. According to comScore survey, 25.3% of US adults use smart phones in their daily lives. Motivated by the capability of smart phones and their extensive usage, I focused on utilizing them for bio-medical applications. In this thesis, I present a new application for a smart phone to quantify the vital signs such as heart rate, respiratory rate and blood pressure with the help of its built-in sensors. Using the camera and a microphone, I have shown how the blood pressure and heart rate can be determined for a subject. People sometimes encounter minor situations like fainting or fatal accidents like car crash at unexpected times and places. It would be useful to have a device which can measure all vital signs in such an event. The second part of this thesis demonstrates a new mode of communication for next generation 9-1-1 calls. In this new architecture, the call-taker will be able to control the multimedia elements in the phone from a remote location. This would help the call-taker or first responder to have a better control over the situation. Transmission of the vital signs measured using the smart phone can be a life saver in critical situations. In today's voice oriented 9-1-1 calls, the dispatcher first collects critical information (e.g., location, call-back number) from caller, and assesses the situation. Meanwhile, the dispatchers constantly face a "60-second dilemma"; i.e., within 60 seconds, they need to make a complicated but important decision, whether to dispatch and, if so, what to dispatch. The dispatchers often feel that ...
Date: December 2010
Creator: Chandrasekaran, Vikram

An Adaptive Linearization Method for a Constraint Satisfaction Problem in Semiconductor Device Design Optimization

Description: The device optimization is a very important element in semiconductor technology advancement. Its objective is to find a design point for a semiconductor device so that the optimized design goal meets all specified constraints. As in other engineering fields, a nonlinear optimizer is often used for design optimization. One major drawback of using a nonlinear optimizer is that it can only partially explore the design space and return a local optimal solution. This dissertation provides an adaptive optimization design methodology to allow the designer to explore the design space and obtain a globally optimal solution. One key element of our method is to quickly compute the set of all feasible solutions, also called the acceptability region. We described a polytope-based representation for the acceptability region and an adaptive linearization technique for device performance model approximation. These efficiency enhancements have enabled significant speed-up in estimating acceptability regions and allow acceptability regions to be estimated for a larger class of device design tasks. Our linearization technique also provides an efficient mechanism to guarantee the global accuracy of the computed acceptability region. To visualize the acceptability region, we study the orthogonal projection of high-dimensional convex polytopes and propose an output sensitive algorithm for projecting polytopes into two dimensions.
Date: May 1999
Creator: Chang, Chih-Hui, 1967-

An Interpreter for the Basic Programming Language

Description: In this thesis, the first chapter provides the general description of this interpreter. The second chapter contains a formal definition of the syntax of BASIC along with an introduction to the semantics. The third chapter contains the design of data structure. The fourth chapter contains the description of algorithms along with stages for testing the interpreter and the design of debug output. The stages and actions-are represented internally to the computer in tabular forms. For statement parsing working syntax equations are established. They serve as standards for the conversion of source statements into object pseudocodes. As the statement is parsed for legal form, pseudocodes for this statement are created. For pseudocode execution, pseudocodes are represented internally to the computer in tabular forms.
Date: May 1975
Creator: Chang, Min-Jye S.

Generating Machine Code for High-Level Programming Languages

Description: The purpose of this research was to investigate the generation of machine code from high-level programming language. The following steps were undertaken: 1) Choose a high-level programming language as the source language and a computer as the target computer. 2) Examine all stages during the compiling of a high-level programming language and all data sets involved in the compilation. 3) Discover the mechanism for generating machine code and the mechanism to generate more efficient machine code from the language. 3) Construct an algorithm for generating machine code for the target computer. The results suggest that compiler is best implemented in a high-level programming language, and that SCANNER and PARSER should be independent of target representations, if possible.
Date: December 1976
Creator: Chao, Chia-Huei

Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem

Description: Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, the part of Timestamp of interest, and Frequency Count. Lastly, a greedy choosing scheme, Snake, switches back and forth as the amount of compression that two List Update algorithms achieves fluctuates, to increase overall compression. The Burrows-Wheeler Transform is based on sorting of contexts. The other improvements are better sorting orders, such as “aeioubcdf...” instead of standard alphabetical “abcdefghi...” on English text data, and an algorithm for computing orders for any data, and Gray code sorting instead of standard sorting. Both techniques lessen the overwork incurred by whatever List Update algorithms are used by reducing the difference between adjacent sorted ...
Date: August 2001
Creator: Chapin, Brenton

Video Analytics with Spatio-Temporal Characteristics of Activities

Description: As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense trajectories are clustered to construct mid-level actionlets, and the temporal relationships between actionlets are modeled as Action Graphs based on Allen interval predicates. The second is an effort for a novel and efficient representation of action graphs based on a sparse coding framework. Action graphs are first represented using Laplacian matrices and then decomposed as a linear combination of primitive dictionary items following sparse coding scheme. The optimization is eventually formulated and solved as a determinant maximization problem, and 1-nearest neighbor is used for action classification. The experiments have shown better results than existing approaches for regions-of-interest detection and action ...
Date: May 2015
Creator: Cheng, Guangchun

Automatic Speech Recognition Using Finite Inductive Sequences

Description: This dissertation addresses the general problem of recognition of acoustic signals which may be derived from speech, sonar, or acoustic phenomena. The specific problem of recognizing speech is the main focus of this research. The intention is to design a recognition system for a definite number of discrete words. For this purpose specifically, eight isolated words from the T1MIT database are selected. Four medium length words "greasy," "dark," "wash," and "water" are used. In addition, four short words are considered "she," "had," "in," and "all." The recognition system addresses the following issues: filtering or preprocessing, training, and decision-making. The preprocessing phase uses linear predictive coding of order 12. Following the filtering process, a vector quantization method is used to further reduce the input data and generate a finite inductive sequence of symbols representative of each input signal. The sequences generated by the vector quantization process of the same word are factored, and a single ruling or reference template is generated and stored in a codebook. This system introduces a new modeling technique which relies heavily on the basic concept that all finite sequences are finitely inductive. This technique is used in the training stage. In order to accommodate the variabilities in speech, the training is performed casualty, and a large number of training speakers is used from eight different dialect regions. Hence, a speaker independent recognition system is realized. The matching process compares the incoming speech with each of the templates stored, and a closeness ration is computed. A ratio table is generated anH the matching word that corresponds to the smallest ratio (i.e. indicating that the ruling has removed most of the symbols) is selected. Promising results were obtained for isolated words, and the recognition rates ranged between 50% and 100%.
Date: August 1996
Creator: Cherri, Mona Youssef, 1956-

Performance Evaluation of MPLS on Quality of Service in Voice Over IP (VoIP) Networks

Description: The transmission of voice data over Internet Protocol (IP) networks is rapidly gaining acceptance in the field of networking. The major voice transmissions in the IP networks are involved in Internet telephony, which is also known as IP telephony or Voice Over IP (VoIP). VoIP is undergoing many enhancements to provide the end users with same quality as in the public switched telephone networks (PSTN). These enhancements are mostly required in quality of service (QoS) for the transmission of voice data over the IP networks. As with recent developments in the networking field, various protocols came into market to provide the QoS in IP networks - of them, multi protocol label switching (MPLS) is the most reliable and upcoming protocol for working on QoS. The problem of the thesis is to develop an IP-based virtual network, with end hosts and routers, implement MPLS on the network, and analyze its QoS for voice data transmission.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Chetty, Sharath

Mobile-Based Smart Auscultation

Description: In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be used by public or clinical health workers. This application can detect abnormal heart sounds with up to 92-98% accuracy. In addition, the application can record, but not yet classify, lung sounds. This application will be able to help save thousands of lives by allowing anyone to identify abnormal heart and lung sounds.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Chitnis, Anurag Ashok