Search Results

open access

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fractio… more
Date: May 2002
Creator: Abbott, Patrick Roland
open access

Perturbation of renewal processes

Description: Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasona… more
Date: May 2008
Creator: Akin, Osman Caglar
open access

Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Description: A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomater… more
Date: August 2007
Creator: Anand, Aman
open access

Non-Poissonian statistics, aging and "blinking'" quantum dots.

Description: This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first s… more
Date: August 2004
Creator: Aquino, Gerardo
open access

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

Description: We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows … more
Date: August 2008
Creator: Bagci, Gokhan Baris
open access

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-bi… more
Date: December 2007
Creator: Bagci, V. M. Kemal
open access

Computational Studies of Selected Ruthenium Catalysis Reactions.

Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate … more
Date: December 2007
Creator: Barakat, Khaldoon A.
open access

Complexity as Aging Non-Poisson Renewal Processes

Description: The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter … more
Date: May 2007
Creator: Bianco, Simone
open access

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonan… more
Date: August 2000
Creator: Bigelow, Alan W.
open access

The Dynamic Foundation of Fractal Operators.

Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation … more
Date: May 2003
Creator: Bologna, Mauro
open access

Maxwell's Equations from Electrostatics and Einstein's Gravitational Field Equation from Newton's Universal Law of Gravitation Using Tensors

Description: Maxwell's equations are obtained from Coulomb's Law using special relativity. For the derivation, tensor analysis is used, charge is assumed to be a conserved scalar, the Lorentz force is assumed to be a pure force, and the principle of superposition is assumed to hold. Einstein's gravitational field equation is obtained from Newton's universal law of gravitation. In order to proceed, the principle of least action for gravity is shown to be equivalent to the maximization of proper time along a … more
Date: May 2004
Creator: Burns, Michael E.
open access

Fractional Brownian motion and dynamic approach to complexity.

Description: The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power … more
Date: August 2007
Creator: Cakir, Rasit
open access

Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

Description: This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By … more
Date: May 2008
Creator: Campisi, Michele
open access

The Concept of Collision Strength and Its Applications

Description: Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equatio… more
Date: May 2004
Creator: Chang, Yongbin

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Description: Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunic… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Chen, Yandong
open access

Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides

Description: The semiconducting silicides offer significant potential for use in optoelectronic devices. Full implementation of the materials, however, requires the ability to tailor the energy gap and band structure to permit the synthesis of heterojunctions. One promising approach is to alloy the silicides with Ge. As part of an investigation into the synthesis of semiconducting silicide heterostructures, a series of β-Fe(Si1−xGex)2 epilayer samples, with nominal alloy content in the range 0 < x < 0.15, h… more
Date: August 2009
Creator: Cottier, Ryan James
open access

Nested Well Plasma Traps

Description: Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation times… more
Date: August 2000
Creator: Dolliver, Darrell

Approach to Quantum Information starting from Bell's Inequality (Part I) and Statistical Analysis of Time Series Corresponding to Complex Processes (Part II)

Description: I: Quantum information obeys laws that subtly extend those governing classical information, making possible novel effect such as cryptography and quantum computation. Quantum computations are extremely sensitive to disruption by interaction of the computer with its environment, but this problem can be overcome by recently developed quantum versions of classical error-correcting codes and fault-tolerant circuits. Based on these ideas, the purpose of this paper is to provide an approach to quantu… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2002
Creator: Failla, Roberto

Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Description: The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspecti… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Failla, Roberto
open access

Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices

Description: The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various fo… more
Date: May 2008
Creator: Garner, Brett William
open access

Emergence of Complexity from Synchronization and Cooperation

Description: The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in diff… more
Date: May 2008
Creator: Geneston, Elvis L.
open access

Decoherence, Master Equation for Open Quantum Systems, and the Subordination Theory

Description: This thesis addresses the problem of a form of anomalous decoherence that sheds light into the spectroscopy of blinking quantum dots. The system studied is a two-state system, interacting with an external environment that has the effect of establishing an interaction between the two states, via a coherence generating coupling, called inphasing. The collisions with the environment produce also decoherence, named dephasing. Decoherence is interpreted as the entanglement of the coherent superposit… more
Date: August 2005
Creator: Giraldi, Filippo
open access

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and… more
Date: May 2000
Creator: Guo, Baonian

Brownian Movement and Quantum Computers

Description: This problem in lieu of thesis is a discussion of two topics: Brownian movement and quantum computers. Brownian movement is a physical phenomenon in which the particle velocity is constantly undergoing random fluctuations. Chapters 2, 3 and 4, describe Brownian motion from three different perspectives. The next four chapters are devoted to the subject of quantum computers, which are the signal of a new era of technology and science combined together. In the first chapter I present to a reader … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 2004
Creator: Habel, Agnieszka
Back to Top of Screen