UNT Libraries - 7 Matching Results

Search Results

Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems

Description: In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
Date: August 1995
Creator: Hassanpour, Mehran

Descriptions and Computation of Ultrapowers in L(R)

Description: The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.
Date: August 1995
Creator: Khafizov, Farid T.

On Groups of Positive Type

Description: We describe groups of positive type and prove that a group G is of positive type if and only if G admits a non-trivial partition. We completely classify groups of type 2, and present examples of other groups of positive type as well as groups of type zero.
Date: August 1995
Creator: Moore, Monty L.

Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

Description: We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems.
Date: August 1995
Creator: Neuberger, John M. (John Michael)

Physical Motivation and Methods of Solution of Classical Partial Differential Equations

Description: We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
Date: August 1995
Creator: Thompson, Jeremy R. (Jeremy Ray)

Steepest Sescent on a Uniformly Convex Space

Description: This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes.
Date: August 1995
Creator: Zahran, Mohamad M.