UNT Libraries - Browse


A Preliminary Controller Design for Drone Carried Directional Communication System

Description: In this thesis, we conduct a preliminary study on the controller design for directional antenna devices carried by drones. The goal of the control system is to ensure the best alignment between two directional antennas so as to enhance the performance of air-to-air communication between the drones. The control system at the current stage relies on the information received from GPS devices. The control system includes two loops: velocity loop and position loop to suppress wind disturbances and to assure the alignment of two directional antennae. The simulation and animation of directional antennae alignment control for two-randomly moving drones was developed using SIMULINK. To facilitate RSSI-based antenna alignment control to be conducted in the future work, a study on initial scanning techniques is also included at the end of this thesis.
Date: August 2015
Creator: AL-Emrani, Firas

Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications

Description: Poor air quality can greatly affect the public health. Research studies indicate that indoor air can be more polluted than the outdoor air. An indoor air quality monitoring system will help to create an awareness of the quality of air inside which will eventually help in improving it. The objective of this research is to develop a low cost wireless sensor system for indoor air quality monitoring. The major cost reduction of the system is achieved by using low priced sensors. Interface circuits had to be designed to make these sensors more accurate. The system is capable of measuring carbon dioxide, carbon monoxide, ozone, temperature, humidity and volatile organic compounds. The prototype sensor node modules were developed. The sensor nodes were the connected together by Zigbee network. The nodes were developed in such a way that it is compact in size and wireless connection of sensor nodes enable to collect air quality data from multiple locations simultaneously. The collected data was stored in a computer. We employed linear least-square approach for the calibration of each sensor to derive a conversion formula for converting the sensor readings to engineering units. The system was tested with different pollutants and data collected was compared with a professional grade monitoring system for analyzing its performance. The results indicated that the data from our system matched quite well with the professional grade monitoring system.
Date: May 2014
Creator: Abraham, Sherin

Low Leakage Asymmetric Stacked Sram Cell

Description: Memory is an important part of any digital processing system. On-chip SRAM can be found in various levels of the memory hierarchy in a processor and occupies a considerable area of the chip. Leakage is one of the challenges which shrinking of technology has introduced and the leakage of SRAM constitutes a substantial part of the total leakage power of the chip due to its large area and the fact that many of the cells are idle without any access. In this thesis, we introduce asymmetric SRAM cells using stacked transistors which reduce the leakage up to 26% while increasing the delay of the cell by only 1.2% while reducing the read noise margin of the cell by only 15.7%. We also investigate an asymmetric cell configuration in which increases the delay by 33% while reduces the leakage up to 30% and reducing the read noise margin by only 1.2% compared to a regular SRAM cell.
Date: May 2014
Creator: Ahrabi, Nina

Consensus Building in Sensor Networks and Long Term Planning for the National Airspace System

Description: In this thesis, I present my study on the impact of multi-group network structure on the performance of consensus building strategies, and the preliminary mathematical formulation of the problem on improving the performance of the National Airspace system (NAS) through long-term investment. The first part of the thesis is concerned with a structural approach to the consensus building problem in multi-group distributed sensor networks (DSNs) that can be represented by bipartite graph. Direct inference of the convergence behavior of consensus strategies from multi-group DSN structure is one of the contributions of this thesis. The insights gained from the analysis facilitate the design and development of DSNs that meet specific performance criteria. The other part of the thesis is concerned with long-term planning and development of the NAS at a network level, by formulating the planning problem as a resource allocation problem for a flow network. The network-level model viewpoint on NAS planning and development will give insight to the structure of future NAS and will allow evaluation of various paradigms for the planning problem.
Date: May 2011
Creator: Akula, Naga Venkata Swathik

An Interactive Framework for Teaching Fundamentals of Digital Logic Design and VLSI Design

Description: Integrated Circuits (ICs) have a broad range of applications in healthcare, military, consumer electronics etc. The acronym VLSI stands for Very Large Scale Integration and is a process of making ICs by placing millions of transistors on a single chip. Because of advancements in VLSI design technologies, ICs are getting smaller, faster in speed and more efficient, making personal devices handy, and with more features. In this thesis work an interactive framework is designed in which the fundamental concepts of digital logic design and VLSI design such as logic gates, MOS transistors, combinational and sequential logic circuits, and memory are presented in a simple, interactive and user friendly way to create interest in students towards engineering fields, especially Electrical Engineering and Computer Engineering. Most of the concepts are explained in this framework by taking the examples which we see in our daily lives. Some of the critical design concerns such as power and performance are presented in an interactive way to make sure that students can understand these significant concepts in an easy and user friendly way.
Date: August 2014
Creator: Battina, Brahmasree

Development of Wireless Sensor Network System for Indoor Air Quality Monitoring

Description: This thesis describes development of low cost indoor air quality (IAQ) monitoring system for research. It describes data collection of various parameters concentration present in indoor air and sends data back to host PC for further processing. Thesis gives detailed information about hardware and software implementation of IAQ monitoring system. Also discussed are building wireless ZigBee network, creating user friendly graphical user interface (GUI) and analysis of obtained results in comparison with professional benchmark system to check system reliability. Throughputs obtained are efficient enough to use system as a reliable IAQ monitor.
Date: December 2012
Creator: Borkar, Chirag

A Real-Time Electronic Sound Analysis System with Graphical User Interface

Description: Noise-induced hearing loss is a serious problem common to musical environments. Current dosimetry technology is primarily designed for industrial environments and not suited for musical settings. At present, there are no government regulations that apply to the educational music environment as it relates to monitoring and prevention of hearing loss. Also, no system exists than can serve as a proactive tool in observation and reporting of sound exposure levels with the goal of hearing conservation. Newly proposed system takes a software based approach in designing a proactive dosimetry system that can assess the risk of sound noise exposure. It provides real-time feedback trough a graphical user interface that is capable of database storage for further study.
Date: August 2011
Creator: Brgulja, Amir

An Arduino Based Control System for a Brackish Water Desalination Plant

Description: Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.
Date: August 2015
Creator: Caraballo, Ginna

Communication System over Gnu Radio and OSSIE

Description: GNU Radio and OSSIE (Open-Source SCA (Software communication architecture) Implementation-Embedded) are two open source software toolkits for SDR (Software Defined Radio) developments, both of them can be supported by USRP (Universal Software Radio Peripheral). In order to compare the performance of these two toolkits, an FM receiver over GNU Radio and OSSIE are tested in my thesis, test results are showed in Chapter 4 and Chapter 5. Results showed that the FM receiver over GNU Radio has better performance, due to the OSSIE is lack of synchronization between USRP interface and the modulation /demodulation components. Based on this, the SISO (Single Input Single Output) communication system over GNU Radio is designed to transmit and receive sound or image files between two USRP equipped with RFX2400 transceiver at 2.45G frequency. Now, GNU Radio and OSSIE are widely used for academic research, but the future work based on GNU Radio and OSSIE can be designed to support MIMO, sensor network, and real time users etc.
Date: December 2011
Creator: Cheng, Zizhi

Measurement and Analysis of Indoor Air Quality Conditions

Description: More than 80% of the people in urban regions and about 98% of cities in low and middle income countries have poor air quality according to the World Health Organization. People living in such environment suffer from many disorders like a headache, shortness of breath or even the worst diseases like lung cancer, asthma etc. The main objective of the thesis is to create awareness about the air quality and the factors that are causing air pollution to the people which is really important and provide tools at their convenience to measure and analyze the air quality. Taking real time air quality scenarios, various experiments were made using efficient sensors to study both the indoor and outdoor air quality. These experimental results will eventually help people to understand air quality better. An outdoor air quality data measurement system is developed in this research using Python programming to provide people an opportunity to retrieve and manage the air quality data and get the concentrations of the leading pollutants. The entire designing of the program is made to run with the help of a graphical user interface tool for the user, as user convenience is considered as one of the objectives of the thesis. A graphical user interface is made for the user convenience to visualize graphically the data from the database. The designed system is tested and used for the measurement and analysis of the outdoor air quality. This data will be available in the database so it can be used for analyzing the air quality data for several days or months or years. Using the GrayWolf system and the designed outdoor air quality data measurement system, both the indoor and outdoor air quality was measured to analyze and correlate.
Date: August 2016
Creator: Chidurala, Veena

Parameter Estimation Using Consensus Building Strategies with Application to Sensor Networks

Description: Sensor network plays a significant role in determining the performance of network inference tasks. A wireless sensor network with a large number of sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in WSN is developing an efficient protocol which has a significant impact on the convergence of the network. Parameter estimation is one of the most important applications of sensor network. In order to model such large and complex networks for estimation, efficient strategies and algorithms which take less time to converge are being developed. To deal with this challenge, an approach of having multilayer network structure to estimate parameter and reach convergence in less time is estimated by comparing it with known gossip distributed algorithm. Approached Multicast multilayer algorithm on a network structure of Gaussian mixture model with two components to estimate parameters were compared and simulated with gossip algorithm. Both the algorithms were compared based on the number of iterations the algorithms took to reach convergence by using Expectation Maximization Algorithm.Finally a series of theoretical and practical results that explicitly showed that Multicast works better than gossip in large and complex networks for estimation in consensus building strategies.
Date: December 2013
Creator: Dasgupta, Kaushani

A Low-cost Wireless Sensor Network System Using Raspberry Pi and Arduino for Environmental Monitoring Applications

Description: Sensors are used to convert physical quantity into numerical data. Various types of sensors can be coupled together to make a single node. A distributed array of these nodes can be deployed to collect environmental data by using appropriate sensors. Application of low powered short range radio transceivers as a communication medium between spatially distributed sensor nodes is known as wireless sensor network. In this thesis I build such a network by using Arduino, Raspberry Pi and XBee. My goal was to accomplish a prototype system so that the collected data can be stored and managed both from local and remote locations. The system was targeted for both indoor and outdoor environment. As a part of the development a controlling application was developed to manage the sensor nodes, wireless transmission, to collect and store data using a database management service. Raspberry Pi was used as base station and webserver. Few web based application was developed for configuring the network, real time monitoring, and database management. Whole system functions as a single entity. The use of open source hardware and software made it possible to keep the cost of the system low. The successful development of the system can be considered as a prototype which needs to be expanded for large scale environmental monitoring applications.
Date: May 2014
Creator: Ferdoush, Sheikh Mohammad

Development of Indium Oxide Nanowires as Efficient Gas Sensors

Description: Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2011
Creator: Gali, Pradeep

Design and Implementation of Communication Platform for Autonomous Decentralized Systems

Description: This thesis deals with the decentralized autonomous system, in which individual nodes acting like peers, communicate and participate in collaborative tasks and decision making processes. An experimental test-bed is created using four Garcia robots. The robots act like peers and interact with each other using user datagram protocol (UDP) messages. Each robot continuously monitors for messages coming from other robots and respond accordingly. Each robot broadcasts its location to all the other robots within its vicinity. Robots do not have built-in global positioning system (GPS). So, an indoor localization method based on signal strength is developed to estimate robot's position. The signal strength that the robot gets from the nearby wireless access points is used to calculate the robot's position. Trilateration and fingerprint are some of the indoor localization methods used for this purpose. The communication functionality of the decentralized system has been tested and verified in the autonomous systems laboratory.
Date: December 2010
Creator: Gottipati, Naga Sravani

Practical Robust MIMO OFDM Communication System for High-Speed Mobile Communication

Description: This thesis presents the design of a communication system (PRCS) which improves on all aspects of the current state of the art 4G communication system Long Term Evolution (LTE) including peak to average power ratio (PAPR), data reliability, spectral efficiency and complexity using the most recent state of the art research in the field combined with novel implementations. This research is relevant and important to the field of electrical and communication engineering because it provides benefits to consumers in the form of more reliable data with higher speeds as well as a reduced burden on hardware original equipment manufacturers (OEMs). The results presented herein show up to a 3 dB reduction in PAPR, less than 10-5 bit errors at 7.5 dB signal to noise ratio (SNR) using 4QAM, up to 3 times increased throughput in the uplink mode and 10 times reduced channel coding complexity.
Date: May 2015
Creator: Grabner, Mitchell John James

WiFi Networks through Directional Antenna: An Experimental Study

Description: In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. The WiFi network can be connected to the Internet to extend WiFi access to areas where WiFi and other Internet infrastructures are not available. In order to establish a local area network to propagate WIFI service, directional antennas and wireless routers are used to create it. Due to unstable working condition on the flying drones, a precise heading turning stage is designed to maintain the two directional antennas facing to each other. Even if external interferences change the heading of the drones, the stages will automatically rotate back to where it should be to offset the bias. Also, to maintain the same flying altitude, a ground controller is designed to measure the height of the drones so that the directional antennas can communicate to each other successfully. To verify the design of the whole system, quite a few field experiments were performed. Experiments results indicates the design is reliable, viable and successful. Especially at disaster areas, it’ll help people a lot.
Date: May 2015
Creator: Gu, Yixin

Integrating environmental data acquisition and low cost Wi-Fi data communication.

Description: This thesis describes environmental data collection and transmission from the field to a server using Wi-Fi. Also discussed are components, radio wave propagation, received power calculations, and throughput tests. Measured receive power resulted close to calculated and simulated values. Throughput tests resulted satisfactory. The thesis provides detailed systematic procedures for Wi-Fi radio link setup and techniques to optimize the quality of a radio link.
Date: December 2009
Creator: Gurung, Sanjaya

The Effect of Mobility on Wireless Sensor Networks

Description: Wireless sensor networks (WSNs) have gained attention in recent years with the proliferation of the micro-electro-mechanical systems, which has led to the development of smart sensors. Smart sensors has brought WSNs under the spotlight and has created numerous different areas of research such as; energy consumption, convergence, network structures, deployment methods, time delay, and communication protocols. Convergence rates associated with information propagations of the networks will be questioned in this thesis. Mobility is an expensive process in terms of the associated energy costs. In a sensor network, mobility has significant overhead in terms of closing old connections and creating new connections as mobile sensor nodes move from one location to another. Despite these drawbacks, mobility helps a sensor network reach an agreement more quickly. Adding few mobile nodes to an otherwise static network will significantly improve the network’s ability to reach consensus. This paper shows the effect of the mobility on convergence rate of the wireless sensor networks, through Eigenvalue analysis, modeling and simulation.
Date: August 2014
Creator: Hasir, Ibrahim

Dual-Band Quarter Wavelength and Half Wavelength Microstrip Transmission Line Design

Description: The thesis represents the design for dual-band quarter wavelength and half wavelength microstrip transmission line. Chapter 2 proposed the design of a novel dual-band asymmetric pi-shaped short-circuited quarter wavelength microstrip transmission line working at frequencies 1GHz and 1.55 GHz for 50Ω transmission line and at frequencies 1GHz and 1.43GHz for 60Ω transmission line. Chapter 3 proposed the design of a novel dual-band quarter wavelength microstrip transmission line with asymmetrically allocated open stubs and short-circuited stubs working at frequencies 1GHz and 1.32GHz. Chapter 4 proposed the design of dual-band pi-shaped open stub half wavelength microstrip transmission line working at frequencies 1GHz and 2.07GHz. Numerical simulations are performed both in HyperLynx 3D EM and in circuit simulator ADS for all of the proposed designs to measure the return loss (S11) and insertion loss (S12) in dB and phase response for S12 in degree.
Date: May 2015
Creator: Imran, Md Asheque

Teaching Fundamentals of Digital Logic Design and VLSI Design Using Computational Textiles

Description: This thesis presents teaching fundamentals of digital logic design and VLSI design for freshmen and even for high school students using e-textiles. This easily grabs attention of students as it is creative and interesting. Using e-textiles to project these concepts would be easily understood by students at young age. This involves stitching electronic circuits on a fabric using basic components like LEDs, push buttons and so on. The functioning of these circuits is programmed in Lilypad Arduino. By using this method, students get exposed to basic electronic concepts at early stage which eventually develops interest towards engineering field.
Date: August 2014
Creator: Inampudi, Sivateja

Hardware Implementation Of Conditional Motion Estimation In Video Coding

Description: This thesis presents the rate distortion analysis of conditional motion estimation, a process in which motion computation is restricted to only active pixels in the video. We model active pixels as independent and identically distributed Gaussian process and inactive pixels as Gaussian-Markov process and derive the rate distortion function based on conditional motion estimation. Rate-Distortion curves for the conditional motion estimation scheme are also presented. In addition this thesis also presents the hardware implementation of a block based motion estimation algorithm. Block matching algorithms are difficult to implement on FPGA chip due to its complexity. We implement 2D-Logarithmic search algorithm to estimate the motion vectors for the image. The matching criterion used in the algorithm is Sum of Absolute Differences (SAD). VHDL code for the motion estimation algorithm is verified using ISim and is implemented using Xilinx ISE Design tool. Synthesis results for the algorithm are also presented.
Date: December 2011
Creator: Kakarala, Avinash

A 018μm Cmos Transmitter for Ecg Signals

Description: Electrocardiography (ECG) signal transmitter is the device used to transmit the electrical signals of the heart to the remote machine. These electrical signals are ECG signals caused due to electrical activities in the heart. ECG signals have very low amplitude and frequency; hence amplification of the signals is needed to strengthen the signal. Conversion of the amplified signal into digital information and transmitting that information without losing any data is the key. This information is further used in monitoring the heart.
Date: December 2013
Creator: Kakarna, Tejaswi

A Study of Anti-collision Multi-tag Identification Algorithms for Passive RFID Systems

Description: The major advantages of radio frequency identification (RFID) technology over barcodes are that the RFID-tagged objects do not require to be in line-of-sight with the reader for their identification and multiple objects can be read simultaneously. But when multiple objects are read simultaneously there is always a problem of collision which reduces the efficiency of the system. This thesis presents a comprehensive study of the dynamic framed slotted ALOHA (DFSA)-based anti-collision multi-tag identification algorithms for passive RFID system. Performance of various DFSA algorithms is compared through extensive simulation results. In addition, a number of simple performance improvement techniques have also been investigated in this thesis, including improved estimation techniques for the number of tags in each read cycle and a low-complexity heuristic stopping criterion that can be easily implemented in the practical system.
Date: May 2010
Creator: Kamineni, Neelima

Development Of A Testbed For Multimedia Environmental Monitoring

Description: Multimedia environmental monitoring involves capturing valuable visual and audio information from the field station. This will permit the environmentalists and researchers to analyze the habitat and vegetation of a region with respect to other environmental specifics like temperature, soil moisture, etc. This thesis deals with the development of a test bed for multimedia monitoring by capturing image information and making it available for the public. A USB camera and a Single board computer are used to capture images at a specified frequency. A web-client is designed to display the image data and establish a secured remote access to reconfigure the field station. The development includes two modes of image acquisition including a basic activity recognition algorithm. Good quality images are captured with the cost for development of the system being less than 2 hundred dollars.
Date: December 2011
Creator: Kandula, Harsha