UNT Libraries - 63 Matching Results

Search Results

Online Construction of Android Application Test Suites

Description: Mobile applications play an important role in the dissemination of computing and information resources. They are often used in domains such as mobile banking, e-commerce, and health monitoring. Cost-effective testing techniques in these domains are critical. This dissertation contributes novel techniques for automatic construction of mobile application test suites. In particular, this work provides solutions that focus on the prohibitively large number of possible event sequences that must be sampled in GUI-based mobile applications. This work makes three major contributions: (1) an automated GUI testing tool, Autodroid, that implements a novel online approach to automatic construction of Android application test suites (2) probabilistic and combinatorial-based algorithms that systematically sample the input space of Android applications to generate test suites with GUI/context events and (3) empirical studies to evaluate the cost-effectiveness of our techniques on real-world Android applications. Our experiments show that our techniques achieve better code coverage and event coverage compared to random test generation. We demonstrate that our techniques are useful for automatic construction of Android application test suites in the absence of source code and preexisting abstract models of an Application Under Test (AUT). The insights derived from our empirical studies provide guidance to researchers and practitioners involved in the development of automated GUI testing tools for Android applications.
Date: December 2017
Creator: Adamo Jr., David T

Joint Schemes for Physical Layer Security and Error Correction

Description: The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A cipher-based cryptosystem is also presented in this research. The complexity of this scheme is reduced compared to conventional schemes. The securities of the ciphers are analyzed against known-plaintext and chosen-plaintext attacks and are found to be secure. Randomization test was also conducted on these schemes and the results are presented. For the proof of concept, the schemes were implemented in software and hardware and these shows a reduction in hardware usage compared to conventional schemes. As a result, joint schemes for error correction and security provide security to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. In this physical layer security approach, the properties of powerful error correcting codes are exploited to deliver reliability to the intended parties, high security against eavesdroppers and efficiency in communication system. The notion of a highly secure and reliable physical layer has the potential to significantly change how communication system designers and users think of the physical layer since the error control codes employed in this work will have the dual roles of both reliability and security.
Date: August 2011
Creator: Adamo, Oluwayomi Bamidele

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Description: Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 directions simultaneously. EMG sensors are placed on the upper and lower forearm and assist in the classification of the finger and wrist movements. Bend sensors are mounted on a glove that is worn on the hand. The sensors are located over the first knuckle of each figure and can determine if the finger is bent or not. An accelerometer is attached to the glove at the base of the wrist and determines the speed and direction of the arm movement. Classification algorithm SVM is used to classify the gestures.
Date: May 2013
Creator: Akumalla, Sarath Chandra

New Frameworks for Secure Image Communication in the Internet of Things (IoT)

Description: The continuous expansion of technology, broadband connectivity and the wide range of new devices in the IoT cause serious concerns regarding privacy and security. In addition, in the IoT a key challenge is the storage and management of massive data streams. For example, there is always the demand for acceptable size with the highest quality possible for images to meet the rapidly increasing number of multimedia applications. The effort in this dissertation contributes to the resolution of concerns related to the security and compression functions in image communications in the Internet of Thing (IoT), due to the fast of evolution of IoT. This dissertation proposes frameworks for a secure digital camera in the IoT. The objectives of this dissertation are twofold. On the one hand, the proposed framework architecture offers a double-layer of protection: encryption and watermarking that will address all issues related to security, privacy, and digital rights management (DRM) by applying a hardware architecture of the state-of-the-art image compression technique Better Portable Graphics (BPG), which achieves high compression ratio with small size. On the other hand, the proposed framework of SBPG is integrated with the Digital Camera. Thus, the proposed framework of SBPG integrated with SDC is suitable for high performance imaging in the IoT, such as Intelligent Traffic Surveillance (ITS) and Telemedicine. Due to power consumption, which has become a major concern in any portable application, a low-power design of SBPG is proposed to achieve an energy- efficient SBPG design. As the visual quality of the watermarked and compressed images improves with larger values of PSNR, the results show that the proposed SBPG substantially increases the quality of the watermarked compressed images. Higher value of PSNR also shows how robust the algorithm is to different types of attack. From the results obtained for the energy- efficient SBPG ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Albalawi, Umar Abdalah S

Resource Management in Wireless Networks

Description: A local call admission control (CAC) algorithm for third generation wireless networks was designed and implemented, which allows for the simulation of network throughput for different spreading factors and various mobility scenarios. A global CAC algorithm is also implemented and used as a benchmark since it is inherently optimized; it yields the best possible performance but has an intensive computational complexity. Optimized local CAC algorithm achieves similar performance as global CAC algorithm at a fraction of the computational cost. Design of a dynamic channel assignment algorithm for IEEE 802.11 wireless systems is also presented. Channels are assigned dynamically depending on the minimal interference generated by the neighboring access points on a reference access point. Analysis of dynamic channel assignment algorithm shows an improvement by a factor of 4 over the default settings of having all access points use the same channel, resulting significantly higher network throughput.
Date: August 2006
Creator: Arepally, Anurag

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner

Statistical Strategies for Efficient Signal Detection and Parameter Estimation in Wireless Sensor Networks

Description: This dissertation investigates data reduction strategies from a signal processing perspective in centralized detection and estimation applications. First, it considers a deterministic source observed by a network of sensors and develops an analytical strategy for ranking sensor transmissions based on the magnitude of their test statistics. The benefit of the proposed strategy is that the decision to transmit or not to transmit observations to the fusion center can be made at the sensor level resulting in significant savings in transmission costs. A sensor network based on target tracking application is simulated to demonstrate the benefits of the proposed strategy over the unconstrained energy approach. Second, it considers the detection of random signals in noisy measurements and evaluates the performance of eigenvalue-based signal detectors. Due to their computational simplicity, robustness and performance, these detectors have recently received a lot of attention. When the observed random signal is correlated, several researchers claim that the performance of eigenvalue-based detectors exceeds that of the classical energy detector. However, such claims fail to consider the fact that when the signal is correlated, the optimal detector is the estimator-correlator and not the energy detector. In this dissertation, through theoretical analyses and Monte Carlo simulations, eigenvalue-based detectors are shown to be suboptimal when compared to the energy detector and the estimator-correlator.
Date: December 2013
Creator: Ayeh, Eric

Sensing and Decoding Brain States for Predicting and Enhancing Human Behavior, Health, and Security

Description: The human brain acts as an intelligent sensor by helping in effective signal communication and execution of logical functions and instructions, thus, coordinating all functions of the human body. More importantly, it shows the potential to combine prior knowledge with adaptive learning, thus ensuring constant improvement. These qualities help the brain to interact efficiently with both, the body (brain-body) as well as the environment (brain-environment). This dissertation attempts to apply the brain-body-environment interactions (BBEI) to elevate human existence and enhance our day-to-day experiences. For instance, when one stepped out of the house in the past, one had to carry keys (for unlocking), money (for purchasing), and a phone (for communication). With the advent of smartphones, this scenario changed completely and today, it is often enough to carry just one's smartphone because all the above activities can be performed with a single device. In the future, with advanced research and progress in BBEI interactions, one will be able to perform many activities by dictating it in one's mind without any physical involvement. This dissertation aims to shift the paradigm of existing brain-computer-interfaces from just ‘control' to ‘monitor, control, enhance, and restore' in three main areas - healthcare, transportation safety, and cryptography. In healthcare, measures were developed for understanding brain-body interactions by correlating cerebral autoregulation with brain signals. The variation in estimated blood flow of brain (obtained through EEG) was detected with evoked change in blood pressure, thus, enabling EEG metrics to be used as a first hand screening tool to check impaired cerebral autoregulation. To enhance road safety, distracted drivers' behavior in various multitasking scenarios while driving was identified by significant changes in the time-frequency spectrum of the EEG signals. A distraction metric was calculated to rank the severity of a distraction task that can be used as an intuitive measure ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Bajwa, Garima

Extrapolating Subjectivity Research to Other Languages

Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the implementation of techniques on par with those developed for English, and by applying methods that are lighter in the usage of text processing infrastructure, we are able to conduct multilingual subjectivity research in these languages as well. Since my aim is also to minimize the amount of manual work required to develop lexica or corpora in these languages, the techniques proposed employ a lever approach, where English often acts as the donor language (the fulcrum in a lever) and allows through a relatively minimal amount of effort to establish preliminary subjectivity research in a target language.
Date: May 2013
Creator: Banea, Carmen

A New Look at Retargetable Compilers

Description: Consumers demand new and innovative personal computing devices every 2 years when their cellular phone service contracts are renewed. Yet, a 2 year development cycle for the concurrent development of both hardware and software is nearly impossible. As more components and features are added to the devices, maintaining this 2 year cycle with current tools will become commensurately harder. This dissertation delves into the feasibility of simplifying the development of such systems by employing heterogeneous systems on a chip in conjunction with a retargetable compiler such as the hybrid computer retargetable compiler (Hy-C). An example of a simple architecture description of sufficient detail for use with a retargetable compiler like Hy-C is provided. As a software engineer with 30 years of experience, I have witnessed numerous system failures. A plethora of software development paradigms and tools have been employed to prevent software errors, but none have been completely successful. Much discussion centers on software development in the military contracting market, as that is my background. The dissertation reviews those tools, as well as some existing retargetable compilers, in an attempt to determine how those errors occurred and how a system like Hy-C could assist in reducing future software errors. In the end, the potential for a simple retargetable solution like Hy-C is shown to be very simple, yet powerful enough to provide a very capable product in a very fast-growing market.
Date: December 2014
Creator: Burke, Patrick William

Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams

Description: Virtual teams in industry are increasingly being used to develop software, create products, and accomplish tasks. However, analyzing those collaborations under same-time/different-place conditions is well-known to be difficult. In order to overcome some of these challenges, this research was concerned with the study of collaboration-based, content-based and temporal measures and their ability to predict cohesion within global software development projects. Messages were collected from three software development projects that involved students from two different countries. The similarities and quantities of these interactions were computed and analyzed at individual and group levels. Results of interaction-based metrics showed that the collaboration variables most related to Task Cohesion were Linguistic Style Matching and Information Exchange. The study also found that Information Exchange rate and Reply rate have a significant and positive correlation to Task Cohesion, a factor used to describe participants' engagement in the global software development process. This relation was also found at the Group level. All these results suggest that metrics based on rate can be very useful for predicting cohesion in virtual groups. Similarly, content features based on communication categories were used to improve the identification of Task Cohesion levels. This model showed mixed results, since only Work similarity and Social rate were found to be correlated with Task Cohesion. This result can be explained by how a group's cohesiveness is often associated with fairness and trust, and that these two factors are often achieved by increased social and work communications. Also, at a group-level, all models were found correlated to Task Cohesion, specifically, Similarity+Rate, which suggests that models that include social and work communication categories are also good predictors of team cohesiveness. Finally, temporal interaction similarity measures were calculated to assess their prediction capabilities in a global setting. Results showed a significant negative correlation between the Pacing Rate and ...
Date: May 2017
Creator: Castro Hernandez, Alberto

Monitoring Dengue Outbreaks Using Online Data

Description: Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Date: May 2014
Creator: Chartree, Jedsada

Social Network Simulation and Mining Social Media to Advance Epidemiology

Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Date: August 2009
Creator: Corley, Courtney David

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

Description: This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus allowing for the automatic generation of mapping links between ontologies. The conclusion of this thesis is that the "knowledge access heuristic" is valuable and that a ranking process based on a large encyclopedic resource can form the basis for an extendable general purpose mechanism capable of identifying relevant concepts by association, which in turn can be effectively utilized for enumeration and comparison at a semantic level.
Date: December 2009
Creator: Coursey, Kino High

Procedural Generation of Content for Online Role Playing Games

Description: Video game players demand a volume of content far in excess of the ability of game designers to create it. For example, a single quest might take a week to develop and test, which means that companies such as Blizzard are spending millions of dollars each month on new content for their games. As a result, both players and developers are frustrated with the inability to meet the demand for new content. By generating content on-demand, it is possible to create custom content for each player based on player preferences. It is also possible to make use of the current world state during generation, something which cannot be done with current techniques. Using developers to create rules and assets for a content generator instead of creating content directly will lower development costs as well as reduce the development time for new game content to seconds rather than days. This work is part of the field of computational creativity, and involves the use of computers to create aesthetically pleasing game content, such as terrain, characters, and quests. I demonstrate agent-based terrain generation, and economic modeling of game spaces. I also demonstrate the autonomous generation of quests for online role playing games, and the ability to play these quests using an emulated Everquest server.
Date: August 2014
Creator: Doran, Jonathon

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless of the intention type, identifying it, evaluating it, and taking actions by using it to prevent any malicious intentions are the main goals of this research. The following four different security vulnerabilities are identified in this research: Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, and compromised authentication. These four vulnerabilities are solved by detecting malware applications, identifying malicious users in a social network, enhancing the encryption system of a phone communication, and identifying user activities using electroencephalogram (EEG) for authentication. Each of these solutions are constructed using the idea of intention identification. Furthermore, many of ...
Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Description: Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their accuracy and application to AMS-SoCs. Several different optimization algorithms are compared for global optimization accuracy and convergence. Three different AMS circuits, ring oscillator, inductor-capacitor voltage-controlled oscillator (LC-VCO) and phase locked loop (PLL) that are present in many AMS-SoC are used in this study for design flow application. Metamodels created in this dissertation provide accuracy with an error of less than 2% from the physical layout simulations. After optimal sampling investigation, metamodel functions and optimization algorithms are ranked in terms of speed and accuracy. Experimental results show that the proposed design flow provides roughly 5,000x speedup over conventional design flows. Thus, ...
Date: May 2012
Creator: Garitselov, Oleg

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Description: New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has been demonstrated through exhaustive simulations. Apart from these methodologies, the application of dual-oxide and dual-threshold techniques at circuit level in order to minimize power and leakage is also explored.
Date: May 2009
Creator: Ghai, Dhruva V.

Incremental Learning with Large Datasets

Description: This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from UCI and endoscopy videos, it is evident that the GISVM achieved satisfactory classifiers that closely model the underlying data distribution. GISVM improves the performance in sensitivity in the incremental steps, significantly reduced the demand for memory space, and demonstrates the ability of recovery from temporary performance degradation.
Date: May 2012
Creator: Giritharan, Balathasan

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

Description: The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopala Krishnan, Arjun

Evaluation Techniques and Graph-Based Algorithms for Automatic Summarization and Keyphrase Extraction

Description: Automatic text summarization and keyphrase extraction are two interesting areas of research which extend along natural language processing and information retrieval. They have recently become very popular because of their wide applicability. Devising generic techniques for these tasks is challenging due to several issues. Yet we have a good number of intelligent systems performing the tasks. As different systems are designed with different perspectives, evaluating their performances with a generic strategy is crucial. It has also become immensely important to evaluate the performances with minimal human effort. In our work, we focus on designing a relativized scale for evaluating different algorithms. This is our major contribution which challenges the traditional approach of working with an absolute scale. We consider the impact of some of the environment variables (length of the document, references, and system-generated outputs) on the performance. Instead of defining some rigid lengths, we show how to adjust to their variations. We prove a mathematically sound baseline that should work for all kinds of documents. We emphasize automatically determining the syntactic well-formedness of the structures (sentences). We also propose defining an equivalence class for each unit (e.g. word) instead of the exact string matching strategy. We show an evaluation approach that considers the weighted relatedness of multiple references to adjust to the degree of disagreements between the gold standards. We publish the proposed approach as a free tool so that other systems can use it. We have also accumulated a dataset (scientific articles) with a reference summary and keyphrases for each document. Our approach is applicable not only for evaluating single-document based tasks but also for evaluating multiple-document based tasks. We have tested our evaluation method for three intrinsic tasks (taken from DUC 2004 conference), and in all three cases, it correlates positively with ROUGE. Based on our experiments ...
Date: August 2016
Creator: Hamid, Fahmida

Validation and Evaluation of Emergency Response Plans through Agent-Based Modeling and Simulation

Description: Biological emergency response planning plays a critical role in protecting the public from possible devastating results of sudden disease outbreaks. These plans describe the distribution of medical countermeasures across a region using limited resources within a restricted time window. Thus, the ability to determine that such a plan will be feasible, i.e. successfully provide service to affected populations within the time limit, is crucial. Many of the current efforts to validate plans are in the form of live drills and training, but those may not test plan activation at the appropriate scale or with sufficient numbers of participants. Thus, this necessitates the use of computational resources to aid emergency managers and planners in developing and evaluating plans before they must be used. Current emergency response plan generation software packages such as RE-PLAN or RealOpt, provide rate-based validation analyses. However, these types of analysis may neglect details of real-world traffic dynamics. Therefore, this dissertation presents Validating Emergency Response Plan Execution Through Simulation (VERPETS), a novel, computational system for the agent-based simulation of biological emergency response plan activation. This system converts raw road network, population distribution, and emergency response plan data into a format suitable for simulation, and then performs these simulations using SUMO, or Simulations of Urban Mobility, to simulate realistic traffic dynamics. Additionally, high performance computing methodologies were utilized to decrease agent load on simulations and improve performance. Further strategies, such as use of agent scaling and a time limit on simulation execution, were also examined. Experimental results indicate that the time to plan completion, i.e. the time when all individuals of the population have received medication, determined by VERPETS aligned well with current alternate methodologies. It was determined that the dynamic of traffic congestion at the POD itself was one of the major factors affecting the completion time of ...
Date: May 2018
Creator: Helsing, Joseph

Models to Combat Email Spam Botnets and Unwanted Phone Calls

Description: With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based on call history. Finally, the accuracy of the proposed willingness estimator is validated with the actual call logs.
Date: May 2008
Creator: Husna, Husain

The Influence of Social Network Graph Structure on Disease Dynamics in a Simulated Environment

Description: The fight against epidemics/pandemics is one of man versus nature. Technological advances have not only improved existing methods for monitoring and controlling disease outbreaks, but have also provided new means for investigation, such as through modeling and simulation. This dissertation explores the relationship between social structure and disease dynamics. Social structures are modeled as graphs, and outbreaks are simulated based on a well-recognized standard, the susceptible-infectious-removed (SIR) paradigm. Two independent, but related, studies are presented. The first involves measuring the severity of outbreaks as social network parameters are altered. The second study investigates the efficacy of various vaccination policies based on social structure. Three disease-related centrality measures are introduced, contact, transmission, and spread centrality, which are related to previously established centrality measures degree, betweenness, and closeness, respectively. The results of experiments presented in this dissertation indicate that reducing the neighborhood size along with outside-of-neighborhood contacts diminishes the severity of disease outbreaks. Vaccination strategies can effectively reduce these parameters. Additionally, vaccination policies that target individuals with high centrality are generally shown to be slightly more effective than a random vaccination policy. These results combined with past and future studies will assist public health officials in their effort to minimize the effects of inevitable disease epidemics/pandemics.
Date: December 2010
Creator: Johnson, Tina V.