UNT Libraries - Browse

ABOUT BROWSE FEED
Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Hypotheses for Scratch Behavior of Polymer Systems that Recover

Description: Scratch recovery is a desirable property of many polymer systems. The reason why some materials have demonstrated excellent scratch recovery while others do not has been a mystery. Explaining the scratch resistance based upon the hardness of a material or its crosslink density is incorrect. In this thesis, novel polymers were tested in an attempt to discover materials that show excellent scratch recovery - one of the most important parameters in determining the wear of a material. Several hypotheses were developed in an attempt to give an accurate picture of how the chemical structure of a polymer affects its scratch recovery. The results show that high scratch recovery is a complex phenomenon not solely dependent upon the presence of electronegative atoms such as fluorine.
Date: May 2002
Creator: Bujard, Bernard

Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Description: Montmorillonite reinforced polymers are a new development in the area of nanocomposite materials. Since reinforcement of epoxy is important to the development of high strength adhesives and composite matrices, the introduction of montmorillonite to epoxy is of interest. Compositional effects on epoxy reactivity, on molecular relaxation, and on mechanical properties were investigated. Change in reactivity was determined by Differential Scanning Calorimetry. Tensile properties at room temperature indicated improved modulus and retention of strength of the epoxy matrix but a decreased elongation to failure. Depression of dry nanocomposite glass transition was observed for nanocomposites beyond 5% by weight montmorillonite. Samples that were saturated with water showed lower moduli due to the epoxy matrix. The greatest moisture absorption rate was found at 7%, the least at 3%.
Date: December 2000
Creator: Butzloff, Peter Robert

Stability of Field Emitter Arrays to Oxygen Exposures

Description: The purpose of these experiments was to determine the degradation mechanisms of molybdenum based field emitter arrays to oxygen exposures and to improve the overall reliability. In addition, we also evaluated the emission current stability of gold-coated field emitter arrays to oxygen exposures. oxygen at 1x10-6 torr was introduced into the chamber through a leak valve for different lengths of time and duty cycles. To ensure identical oxygen exposure and experimental measurement conditions, tips on half the area of the FEA were fully coated with gold and the other half were left uncoated. The emission current from the gold coated half was found to degrade much less than that from the uncoated half, in the presence of oxygen. Also in the absence of oxygen, the emission current recovery for the gold-coated side was much quicker than that for the uncoated side.
Date: December 2002
Creator: Godbole, Soumitra Kumar

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Description: Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of ACP from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt. % concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC blends also show excellent film formability. The amorphous TPI ...
Date: May 1998
Creator: Gopalanarayanan, Bhaskar

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among materials, but more important, aided the mapping of the elastic and plastic contributions. These are essential concepts in fracture analysis.
Date: May 2003
Creator: Hernandez-Luna, Alejandro

Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.

Description: Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the low-Si 319 type aluminum alloys are also presented with sample preparation and analysis condition of TEM and 3DAP tomography.
Date: May 2007
Creator: Hwang, Junyeon

Polymer hydrogel nanoparticles and their networks

Description: The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of microgel particles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of resultant HPC microgels have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, or by organic solvent or by embedding a colloidal crystal array of polymer solid spheres . Creating such periodic 3D structures in materials allows us to obtain useful functionality not only from the constituent building blocks but also from the long-range ordering that characterizes these structures. Hydroxypropyl cellulose (HPC) and poly (acrylic acid ) (PAA) complexes were studied using turbidity measurement and laser light scattering. The phase transition temperature of the complexes is found to depend on pH and molecular weights of PAA and HPC. The driving force for this phenomenon is due to the hydrogen bonding and hydrophobic interaction ...
Date: August 2002
Creator: Lu, Xihua

Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys

Description: The increasing technological need to push service conditions of structural materials to higher temperatures has motivated the development of several alloy systems. Among them, superalloys are an excellent candidate for high temperature applications because of their ability to form coherent ordered precipitates, which enable the retention of high strength close to their melting temperature. The accelerated kinetics of solute diffusion, with or without an added component of mechanical stress, leads to coarsening of the precipitates, and results in microstructural degradation, limiting the durability of the materials. Hence, the coarsening of precipitates has been a classical research problem for these alloys in service. The prolonged hunt for an alternative of nickel base superalloys with superior traits has gained hope after the recent discovery of Co-Al-W based alloys, which readily form high temperature g precipitates, similar to Ni base superalloys. In the present study, coarsening behavior of g precipitates in Co-10Al-10W (at. %) has been carried out at 800°C and 900°C. This study has, for the first time, obtained critical coarsening parameters in cobalt-base alloys. Apart from this, it has incorporated atomic scale compositional information across the g/g interfaces into classical Cahn-Hilliard model for a better model of coarsening kinetics. The coarsening study of g precipitates in Ni-14Al-7 Cr (at. %) has shown the importance of temporal evolution of the compositional width of the g/g interfaces to the coarsening kinetics of g precipitates. This study has introduced a novel, reproducible characterization method of crystallographic study of ordered phase by coupling of orientation microscopy with atom probe tomography (APT). Along with the detailed analysis of field evaporation behaviors of Ni and Co superalloys in APT, the present study determines the site occupancy of various solutes within ordered g precipitates in both Ni and Co superalloys. This study has explained the role of structural ...
Date: August 2014
Creator: Meher, Subhashish

Formation and Quantification of Corrosion Deposits in the Power Industry

Description: The presence of deposits on the secondary side of pressurized water reactor (PWR) steam generator systems is one of the main contributors to the high maintenance costs of these generators. Formation and transport of corrosion products formed due to the presence of impurities, metals and metallic oxides in the secondary side of the steam generator units result in formation of deposits. This research deals with understanding the deposit formation and characterization of deposits by studying the samples collected from different units in secondary side system at Comanche Peak Steam Electric Station (CPSES). Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) have been used for studying the phases, morphologies and compositions of the iron oxides formed at Unit 1 and Unit 2 of secondary side of steamgenerator systems. Hematite and magnetite were found to be the dominant phases of iron oxides present in the units. Fe, Cr, O, Ni, Si, Cl and Cu were found in samples collected from both the units. A qualitative method was developed to differentiate iron oxides using laser induced breakdown spectroscopy (LIBS) based on temporal response of iron oxides to a high power laser beam. A quantitative FTIR technique was developed to identify and quantify iron oxides present in the different components of the secondary side of the steam generator of CPSES. Amines are used in water treatment to control corrosion and fouling in pressurized water reactors. CPSES presently uses an amine combination of dimethylamine (DMA), hydrazine and morpholine to control the water chemistry. Along with the abovementioned amines, this study also focuses on corrosion inhibition mechanismsof a new amine DBU (1, 8-diazabicyclo [5.4.0] undec-7-ene). Electrochemical impedance spectroscopy and polarization curves were used to study the interaction mechanism between DBU solution and inconel alloys 600 and 690 at steamgenerator operating ...
Date: May 2007
Creator: Namduri, Haritha

Epoxy + Liquid Crystalline Epoxy Coreacted Networks

Description: Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4"-hydroxybiphenyl-4'-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into epoxy resin. The improvement in mechanical properties was found to occur irrespective of the absence of liquid crystallinity in the blended networks. The mechanism of crack study indicates that crack deflection and crack bridging are the mechanisms in case of LC epoxy. In case of LC modified epoxy, the crack deflection is the main mechanism. Moreover, the effect of coreacting an epoxy with a reactive monomer liquid crystalline epoxy as a matrix for glass fiber composites was investigated. Mechanical properties of the modified matrix were determined by tensile, flexural and impact testing. The improvement in toughness of the bulk matrix ...
Date: December 2000
Creator: Punchaipetch, Prakaipetch

Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies.

Description: Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050 °C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixOy are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford backscattering spectroscopy (RBS), heavy ion RBS (HI-RBS), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HR-TEM), and time of flight and dynamic secondary ion mass spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixOy films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSixOyNz films.
Date: August 2002
Creator: Quevedo-Lopez, Manuel Angel

Polyamide-imide and Montmorillonite Nanocomposites

Description: Solvent suspensions of a high performance polymer, Polyamide-imide (PAI) are widely used in magnetic wire coatings. Here we investigate the effect that the introduction of montmorillonite (MMT) has on PAI. MMT was introduced into an uncured PAI suspension; the sample was then cured by step-wise heat treatment. Polarized optical microscopy was used to choose the best suitable MMT for PAI matrix and to study the distribution of MMT in PAI matrix. Concentration dependent dispersion effect was studied by x-ray diffraction (XRD) and was confirmed by Transmission electron microscopy (TEM). Differential scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) was used to study impact of MMT on glass transition temperature (Tg) and degradation properties of PAI respectively. Micro-hardness testing of PAI nanocomposites was also performed. A concentration dependent state of dispersion was obtained. The glass transition (Tg), degradation and mechanical properties were found to correlate to the state of dispersion.
Date: August 2001
Creator: Ranade, Ajit

The Electron Emission Characteristics of Aluminum, Molybdenum and Carbon Nanotubes Studied by Field Emission and Photoemission.

Description: The electron emission characteristics of aluminum, molybdenum and carbon nanotubes were studied. The experiments were setup to study the emission behavior as a function of temperature and exposure to oxygen. Changes in the surface work function as a result of thermal annealing were monitored with low energy ultra-violet photoelectron spectroscopy for flat samples while field emission energy distributions were used on tip samples. The change in the field emission from fabricated single tips exposed to oxygen while in operation was measured using simultaneous Fowler-Nordheim plots and electron energy distributions. From the results a mechanism for the degradation in the emission was concluded. Thermal experiments on molybdenum and aluminum showed that these two materials can be reduced at elevated temperatures, while carbon nanotubes on the other hand show effects of oxidation. To purely reduce molybdenum a temperature in excess of 750 ºC is required. This temperature exceeds that allowed by current display device technology. Aluminum on the other hand shows reduction at a much lower temperature of at least 125 ºC; however, its extreme reactivity towards oxygen containing species produces re-oxidation. It is believed that this reduction is due to the outward diffusion of aluminum atoms through the oxide. Carbon nanotubes on the other hand show signs of oxidation as they are heated above 700 ºC. In this case the elevated temperatures cause the opening of the end caps allowing the uptake of water. Oxygen exposure experiments indicate that degradation in field emission is two-fold and is ultimately dependent on the emission current at which the tip is operated. At low emission currents the degradation is exclusively due to oxidation. At high emission currents ion bombardment results in the degradation of the emitter. In between the two extremes, molybdenum tips are capable of stable emission.
Date: December 2002
Creator: Sosa, Edward Delarosa

Analyses of Particulate Contaminants in Semiconductor Processing Fluids

Description: Particle contamination control is a critical issue for the semiconductor industry. In the near future, this industry will be concerned with the chemical identities of contaminant particles as small as 0.01 pm in size. Therefore, analytical techniques with both high chemical sensitivity and spatial resolution are required. Transmission electron microscopy (TEM) provides excellent spatial resolution and yields structural and compositional information. It is rarely used, however, due to the difficulty of sample preparation. The goals of this research are to promote the use of TEM as an ultrafine particle analysis tool by developing new sample preparation methods, and to exploit the new TEM techniques for analysis of particles in semiconductor processing fluids. A TEM methodology for the analysis of particulate contaminants in fluids with an elemental detectability limit as low as 0.1 part per trillion (ppt), and a particle concentration detectability limit as low as 1 particle/ml for particles greater than 0.2 pm was developed and successfully applied to the analysis of particles in HF, H202, de-ionized (DI) water, and on the surface of an electronic device. HF samples from three manufacturers were examined. For HF (B), the maximum particle concentration was 8.3 x 103 particles/ml. Both a viscous material and lath-shaped particles were observed. The Sb concentration was less than 0.6 part per billion (ppb). HF (C) was the cleanest. CaF2 and TiO2 particles were identified in HF (D). For H2 02, iron and tin oxides and hydroxides were identified. The maximum particle concentration was 990 particles/ml. The Sn and Fe concentrations were less than 0.3 ppb. Spherical and dendritic particles were observed. For DI water, spherical and dendritic particles (<2 particles/ml), and particles containing Fe or Si with concentrations less than 0.1 ppt were observed. Contaminants on an electronic device surface were also analyzed. Clusters of small particles ...
Date: August 1998
Creator: Xu, Daxue

Influence of design and coatings on the mechanical reliability of semiconductor wafers.

Description: We investigate some of the mechanical design factors of wafers and the effect on strength. Thin, solid, pre-stressed films are proposed as a means to improve the bulk mechanical properties of a wafer. Three-point bending was used to evaluate the laser scribe density and chemical processing effect on wafer strength. Drop and strike tests were employed to investigate the edge bevel profile effect on the mechanical properties of the wafer. To characterize the effect of thin films on strength, one-micron ceramic films were deposited on wafers using PECVD. Coated samples were prepared by cleaving and were tested using four-point bending. Film adhesion was characterized by notched four-point bending. RBS and FTIR were used to obtain film chemistry, and nanoindentation was used to investigate thin film mechanical properties. A stress measurement gauge characterized residual film stress. Mechanical properties of the wafers correlated to the residual stress in the film.
Date: August 2002
Creator: Yoder, Karl J.