UNT Libraries - Browse

ABOUT BROWSE FEED

Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems

Description: In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
Date: August 1995
Creator: Hassanpour, Mehran

Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data

Description: In this study, we consider the generalized function solutions to nonlinear wave equation with distribution initial data. J. F. Colombeau shows that the initial value problem u_tt - Δu = F(u); m(x,0) = U_0; u_t (x,0) = i_1 where the initial data u_0 and u_1 are generalized functions, has a unique generalized function solution u. Here we take a specific F and specific distributions u_0, u_1 then inspect the generalized function representatives for the initial value problem solution to see if the generalized function solution is a distribution or is more singular. Using the numerical technics, we show for specific F and specific distribution initial data u_0, u_1, there is no distribution solution.
Date: August 1996
Creator: Kim, Jongchul

Universal Branched Coverings

Description: In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings.
Date: May 1993
Creator: Tejada, Débora

Polish Spaces and Analytic Sets

Description: A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set.
Date: August 1997
Creator: Muller, Kimberly (Kimberly Orisja)

Physical Motivation and Methods of Solution of Classical Partial Differential Equations

Description: We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
Date: August 1995
Creator: Thompson, Jeremy R. (Jeremy Ray)

On Groups of Positive Type

Description: We describe groups of positive type and prove that a group G is of positive type if and only if G admits a non-trivial partition. We completely classify groups of type 2, and present examples of other groups of positive type as well as groups of type zero.
Date: August 1995
Creator: Moore, Monty L.

A Topological Uniqueness Result for the Special Linear Groups

Description: The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known.
Date: August 1997
Creator: Opalecky, Robert Vincent

Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

Description: The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined.
Date: August 1994
Creator: Garza, Javier, 1965-

Plane Curves, Convex Curves, and Their Deformation Via the Heat Equation

Description: We study the effects of a deformation via the heat equation on closed, plane curves. We begin with an overview of the theory of curves in R3. In particular, we develop the Frenet-Serret equations for any curve parametrized by arc length. This chapter is followed by an examination of curves in R2, and the resultant adjustment of the Frenet-Serret equations. We then prove the rotation index for closed, plane curves is an integer and for simple, closed, plane curves is ±1. We show that a curve is convex if and only if the curvature does not change sign, and we prove the Isoperimetric Inequality, which gives a bound on the area of a closed curve with fixed length. Finally, we study the deformation of plane curves developed by M. Gage and R. S. Hamilton. We observe that convex curves under deformation remain convex, and simple curves remain simple.
Date: August 1998
Creator: Debrecht, Johanna M.

Cycles and Cliques in Steinhaus Graphs

Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Date: December 1994
Creator: Lim, Daekeun

Property (H*) and Differentiability in Banach Spaces

Description: A continuous convex function on an open interval of the real line is differentiable everywhere except on a countable subset of its domain. There has been interest in the problem of characterizing those Banach spaces where the continuous functions exhibit similar differentiability properties. In this paper we show that if a Banach space E has property (H*) and B_E• is weak* sequentially compact, then E is an Asplund space. In the case where the space is weakly compactly generated, it is shown that property (H*) is equivalent for the space to admit an equivalent Frechet differentiable norm. Moreover, we define the SH* spaces, show that every SH* space is an Asplund space, and show that every weakly sequentially complete SH* space is reflexive. Also, we study the relation between property (H*) and the asymptotic norming property (ANP). By a slight modification of the ANP we define the ANP*, and show that if the dual of a Banach spaces has the ANP*-I then the space admits an equivalent Fréchet differentiability norm, and that the ANP*-II is equivalent to the space having property (H*) and the closed unit ball of the dual is weak* sequentially compact. Also, we show that in the dual of a weakly countably determined Banach space all the ANP-K'S are equivalent, and they are equivalent for the predual to have property (H*).
Date: August 1993
Creator: Obeid, Ossama A.

Primitive Substitutive Numbers are Closed under Rational Multiplication

Description: Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition.
Date: August 1998
Creator: Ketkar, Pallavi S. (Pallavi Subhash)

Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Description: The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and Lewis.
Date: August 1999
Creator: Huff, Cheryl Rae

The Continuous Wavelet Transform and the Wave Front Set

Description: In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.
Date: December 1993
Creator: Navarro, Jaime

Steepest Sescent on a Uniformly Convex Space

Description: This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes.
Date: August 1995
Creator: Zahran, Mohamad M.

Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

Description: We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems.
Date: August 1995
Creator: Neuberger, John M. (John Michael)

Characterizations of Some Combinatorial Geometries

Description: We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.
Date: August 1992
Creator: Yoon, Young-jin

Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought

Description: This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions.
Date: August 1994
Creator: Lindman, Phillip A. (Phillip Anthony)

A Numerical Method for Solving Singular Differential Equations Utilizing Steepest Descent in Weighted Sobolev Spaces

Description: We develop a numerical method for solving singular differential equations and demonstrate the method on a variety of singular problems including first order ordinary differential equations, second order ordinary differential equations which have variational principles, and one partial differential equation.
Date: August 1995
Creator: Mahavier, William Ted

Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

Description: In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
Date: December 1994
Creator: Lee, Jae S. (Jae Seung)

A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

Description: We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental.
Date: August 1998
Creator: Risley, Rebecca N.