UNT Libraries - Browse

ABOUT BROWSE FEED

Linear Operators

Description: This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.
Date: December 1975
Creator: Malhotra, Vijay Kumar

Equivalent Sets and Cardinal Numbers

Description: The purpose of this thesis is to study the equivalence relation between sets A and B: A o B if and only if there exists a one to one function f from A onto B. In Chapter I, some of the fundamental properties of the equivalence relation are derived. Certain basic results on countable and uncountable sets are given. In Chapter II, a number of theorems on equivalent sets are proved and Dedekind's definitions of finite and infinite are compared with the ordinary concepts of finite and infinite. The Bernstein Theorem is studied and three different proofs of it are given. In Chapter III, the concept of cardinal number is introduced by means of two axioms of A. Tarski, and some fundamental theorems on cardinal arithmetic are proved.
Date: December 1975
Creator: Hsueh, Shawing

The Use of Chebyshev Polynomials in Numerical Analysis

Description: The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies in this area. Chapter II enumerates several mathematical situations in which the polynomials naturally arise and suggests reasons for the pursuance of their study. Chapter III includes: Chebyshev polynomials as related to "best" polynomial approximation, Chebyshev series, and methods of producing polynomial approximations to continuous functions. Chapter IV discusses the use of Chebyshev polynomials to solve certain differential equations and Chebyshev-Gauss quadrature.
Date: December 1975
Creator: Forisha, Donnie R.

Euclidean Rings

Description: The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.
Date: May 1974
Creator: Fecke, Ralph Michael

Some Properties of Metric Spaces

Description: The study of metric spaces is closely related to the study of topology in that the study of metric spaces concerns itself, also, with sets of points and with a limit point concept based on a function which gives a "distance" between two points. In some topological spaces it is possible to define a distance function between points in such a way that a limit point of a set in the topological sense is also a limit point of the same set in a metric sense. In such a case the topological space is "metrizable". The real numbers with its usual topology is an example of a topological space which is metrizable, the distance function being the absolute value of the difference of two real numbers. Chapters II and III of this thesis attempt to classify, to a certain extent, what type of topological space is metrizable. Chapters IV and V deal with several properties of metric spaces and certain functions of metric spaces, respectively.
Date: August 1964
Creator: Brazile, Robert P.

Inverse Limit Spaces

Description: Inverse systems, inverse limit spaces, and bonding maps are defined. An investigation of the properties that an inverse limit space inherits, depending on the conditions placed on the factor spaces and bonding maps is made. Conditions necessary to ensure that the inverse limit space is compact, connected, locally connected, and semi-locally connected are examined. A mapping from one inverse system to another is defined and the nature of the function between the respective inverse limits, induced by this mapping, is investigated. Certain restrictions guarantee that the induced function is continuous, onto, monotone, periodic, or open. It is also shown that any compact metric space is the continuous image of the cantor set. Finally, any compact Hausdorff space is characterized as the inverse limit of an inverse system of polyhedra.
Date: December 1974
Creator: Williams, Stephen Boyd

Properties of Some Classical Integral Domains

Description: Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.
Date: May 1975
Creator: Crawford, Timothy B.

Chebyshev Subsets in Smooth Normed Linear Spaces

Description: This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space having a uniformly Gateaux differentiable norm has the property that every weakly closed Chebyshev subset, with non-empty weak interior that is norm-wise dense in the subset, is convex.
Date: December 1974
Creator: Svrcek, Frank J.

Topics in Category Theory

Description: The purpose of this paper is to examine some basic topics in category theory. A category consists of a class of mathematical objects along with a morphism class having an associative composition. The paper is divided into two chapters. Chapter I deals with intrinsic properties of categories. Various "sub-objects" and properties of morphisms are defined and examples are given. Chapter II deals with morphisms between categories called functors and the natural transformations between functors. Special types of functors are defined and examples are given.
Date: August 1974
Creator: Miller, Robert Patrick

Spaces of Closed Subsets of a Topological Space

Description: The purpose of this paper is to examine selected topologies, the Vietoris topology in particular, on S(X), the collection of nonempty, closed subsets of a topological space X. Characteristics of open and closed subsets of S(X), with the Vietoris topology, are noted. The relationships between the space X and the space S(X), with the Vietoris topology, concerning the properties of countability, compactness, and connectedness and the separation properties are investigated. Additional topologies are defined on S(X), and each is compared to the Vietoris topology on S(X). Finally, topological convergence of nets of subsets of X is considered. It is found that topological convergence induces a topology on S(X), and that this topology is the Vietoris topology on S(X) when X is a compact, Hausdorff space.
Date: August 1974
Creator: Leslie, Patricia J.

Wiener's Approximation Theorem for Locally Compact Abelian Groups

Description: This study of classical and modern harmonic analysis extends the classical Wiener's approximation theorem to locally compact abelian groups. The first chapter deals with harmonic analysis on the n-dimensional Euclidean space. Included in this chapter are some properties of functions in L1(Rn) and T1(Rn), the Wiener-Levy theorem, and Wiener's approximation theorem. The second chapter introduces the notion of standard function algebra, cospectrum, and Wiener algebra. An abstract form of Wiener's approximation theorem and its generalization is obtained. The third chapter introduces the dual group of a locally compact abelian group, defines the Fourier transform of functions in L1(G), and establishes several properties of functions in L1(G) and T1(G). Wiener's approximation theorem and its generalization for L1(G) is established.
Date: August 1974
Creator: Shu, Ven-shion

Topologies on Complete Lattices

Description: One of the more important concepts in mathematics is the concept of order, that is, the description or comparison of two elements of a set in terms of one preceding or being smaller than or equal to the other. If the elements of a set, as pairs, exhibit certain order-type characteristics, the set is said to be a partially ordered set. The purpose of this paper is to investigate a special class of partially ordered sets, called lattices, and to investigate topologies induced on these lattices by specially defined order related properties called order-convergence and star-convergence.
Date: December 1973
Creator: Dwyer, William Karl

Continua and Related Topics

Description: This paper is a study of continue and related metric spaces, Chapter I is an introductory chapter. Irreducible continua and noncut points are the main topics in Chapter II. The third chapter begins with a few results on locally connected spaces. These results are then used to prove results in locally connected continua. Decomposable and indecomposable continua are dealt with in Chapter IV. Totally disconnected metric spaces are studied in the beginning of Chapter V. Then we see that every compact metric space is a continuous image of the Cantor set. A continuous map from the Cantor set onto [0,1] is constructed. Also, a continuous map from [0,1] onto [0,1]x[0,1] is built, Then an order preserving homeomorphism is constructed from a metric arc onto [0,1],
Date: August 1982
Creator: Brucks, Karen M. (Karen Marie), 1957-

Sufficient Criteria for Total Differentiability of a Real Valued Function of a Complex Variable in Rn an Extension of H. Rademacher's Result for R²

Description: This thesis provides sufficient conditions for total differentiability almost everywhere of a real-valued function of a complex variable defined on a bounded region in IRn. This thesis extends H. Rademacher's 1918 results in IR2 which culminated in total differentiability, to IRn
Date: August 1982
Creator: Matovsky, Veron Rodieck

Fourier Transforms of Functions on a Finite Abelian Group

Description: This paper presents a theory of Fourier transforms of complex-valued functions on a finite abelian group and investigates two applications of this theory. Chapter I is an introduction with remarks on notation. Basic theory, including Pontrvagin duality and the Poisson Summation formula, is the subject of Chapter II. In Chapter III the Fourier transform is viewed as an intertwining operator for certain unitary group representations. The solution of the eigenvalue problem of the Fourier transform of functions on the group Z/n of integers module n leads to a proof of the quadratic reciprocity law in Chapter IV. Chapter V addresses the, use of the Fourier transform in computing.
Date: August 1982
Creator: Currey, Bradley Norton

An Existence Theorem for an Integral Equation

Description: The principal theorem of this thesis is a theorem by Peano on the existence of a solution to a certain integral equation. The two primary notions underlying this theorem are uniform convergence and equi-continuity. Theorems related to these two topics are proved in Chapter II. In Chapter III we state and prove a classical existence and uniqueness theorem for an integral equation. In Chapter IV we consider the approximation on certain functions by means of elementary expressions involving "bent line" functions. The last chapter, Chapter V, is the proof of the theorem by Peano mentioned above. Also included in this chapter is an example in which the integral equation has more than one solution. The first chapter sets forth basic definitions and theorems with which the reader should be acquainted.
Date: May 1985
Creator: Hunt, Cynthia Young

Product Measure

Description: In this paper we will present two different approaches to the development of product measures. In the second chapter we follow the lead of H. L. Royden in his book Real Analysis and develop product measure in the context of outer measure. The approach in the third and fourth chapters will be the one taken by N. Dunford and J. Schwartz in their book Linear Operators Part I. Specifically, in the fourth chapter, product measures arise almost entirely as a consequence of integration theory. Both developments culminate with proofs of well known theorems due to Fubini and Tonelli.
Date: August 1983
Creator: Race, David M. (David Michael)

Axiom of Choice Equivalences and Some Applications

Description: In this paper several equivalences of the axiom of choice are examined. In particular, the axiom of choice, Zorn's lemma, Tukey's lemma, the Hausdorff maximal principle, and the well-ordering theorem are shown to be equivalent. Cardinal and ordinal number theory is also studied. The Schroder-Bernstein theorem is proven and used in establishing order results for cardinal numbers. It is also demonstrated that the first uncountable ordinal space is unique up to order isomorphism. We conclude by encountering several applications of the axiom of choice. In particular, we show that every vector space must have a Hamel basis and that any two Hamel bases for the same space must have the same cardinality. We establish that the Tychonoff product theorem implies the axiom of choice and see the use of the axiom of choice in the proof of the Hahn- Banach theorem.
Date: August 1983
Creator: Race, Denise T. (Denise Tatsch)

Algorithms of Schensted and Hillman-Grassl and Operations on Standard Bitableaux

Description: In this thesis, we describe Schensted's algorithm for finding the length of a longest increasing subsequence of a finite sequence. Schensted's algorithm also constructs a bijection between permutations of the first N natural numbers and standard bitableaux of size N. We also describe the Hillman-Grassl algorithm which constructs a bijection between reverse plane partitions and the solutions in natural numbers of a linear equation involving hook lengths. Pascal programs and sample output for both algorithms appear in the appendix. In addition, we describe the operations on standard bitableaux corresponding to the operations of inverting and reversing permutations. Finally, we show that these operations generate the dihedral group D_4
Date: August 1983
Creator: Sutherland, David C. (David Craig)

Convergence of Infinite Series

Description: The purpose of this paper is to examine certain questions concerning infinite series. The first chapter introduces several basic definitions and theorems from calculus. In particular, this chapter contains the proofs for various convergence tests for series of real numbers. The second chapter deals primarily with the equivalence of absolute convergence, unconditional convergence, bounded multiplier convergence, and c0 multiplier convergence for series of real numbers. Also included in this chapter is a proof that an unconditionally convergent series may be rearranged so that it converges to any real number desired. The third chapter contains a proof of the Silverman-Toeplitz Theorem together with several applications.
Date: August 1983
Creator: Abbott, Catherine Ann

Duals and Weak Completeness in Certain Sequence Spaces

Description: In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.
Date: August 1980
Creator: Leavelle, Tommy L. (Tommy Lee)

Interpolation and Approximation

Description: In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation problem is proven. Then the problem of how to represent this unique solution is discussed. Finally, the error involved in the interpolation and the convergence of the interpolation process is developed. In the second chapter a theorem about the uniform approximation to continuous functions is proven. Then the best approximation and the least squares approximation (a special case of best approximation) is discussed. In the third chapter orthogonal polynomials as discussed as well as bounded linear functionals in Hilbert spaces, interpolation and approximation and approximation in Hilbert space.
Date: May 1977
Creator: Lal, Ram

Complete Ordered Fields

Description: The purpose of this thesis is to study the concept of completeness in an ordered field. Several conditions which are necessary and sufficient for completeness in an ordered field are examined. In Chapter I the definitions of a field and an ordered field are presented and several properties of fields and ordered fields are noted. Chapter II defines an Archimedean field and presents several conditions equivalent to the Archimedean property. Definitions of a complete ordered field (in terms of a least upper bound) and the set of real numbers are also stated. Chapter III presents eight conditions which are equivalent to completeness in an ordered field. These conditions include the concepts of nested intervals, Dedekind cuts, bounded monotonic sequences, convergent subsequences, open coverings, cluster points, Cauchy sequences, and continuous functions.
Date: August 1977
Creator: Arnold, Thompson Sharon

The Wallman Spaces and Compactifications

Description: If X is a topological space and Y is a ring of closed sets, then a necessary and sufficient condition for the Wallman space W(X,F) to be a compactification of X is that X be T1 andYF separating. A necessary and sufficient condition for a Wallman compactification to be Hausdoff is that F be a normal base. As a result, not all T, compactifications can be of Wallman type. One point and finite Hausdorff compactifications are of Wallman type.
Date: December 1976
Creator: Liu, Wei-kong