UNT Libraries - Browse


Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications

Description: Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The growth of h-BN(0001) multilayers on Co and Ni, and graphene/h-BN(0001) heterostructures on Co have been studied which meet these criteria. Atomic Layer Epitaxy (ALE) of BN was carried out resulting in the formation of macroscopically continuous h-BN(0001) multilayers using BCl3 and NH3 as precursors. X-ray photoemission spectra (XPS) show that the films are stoichiometric with an average film thickness linearly proportional to the number of BCl3/NH3 cycles. Molecular beam epitaxy (MBE) of C yielded few layer graphene in azimuthal registry with BN/Co(0001) substrate. Low energy electron diffraction (LEED) measurements indicate azimuthally oriented growth of both BN and graphene layers in registry with the substrate lattice. Photoemission data indicate B:N atomic ratios of 1:1. Direct growth temperatures of 600 K for BN and 800 to 900 K for graphene MBE indicate multiple integration schemes for applications in spintronics.
Date: August 2016
Creator: Beatty, John D.

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Date: May 2016
Creator: Williams, Kristina

Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures

Description: In the first part of this dissertation, copper bimetallic corrosion and its inhibition in cleaning processes involved in interconnect fabrication is explored. In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, different azole compounds are explored and pyrazole is found out to be a potentially superior Cu corrosion inhibitor, compared to the most widely used benzotriazole (BTA), for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole. In the second part, a novel technique built in-house called multiple internal Reflection Infrared Spectroscopy (MIR-IR) was explored as a characterization tool for characterization of different low-k structures.In leading edge integrated circuit manufacturing, reduction of RC time delay by incorporation of porous ultra low-k interlayer dielectrics into Cu interconnect nanostructure continues to pose major integration challenges. The main challenge is that porous structure renders interlayer dielectrics mechanically weak, chemically unstable and more susceptible to the RIE plasma etching damages. Besides the challenge of handling weak porous ultra low-k materials, a lack of sensitive metrology to guide systematic development of plasma etching, ...
Date: December 2015
Creator: Goswami, Arindom

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

Description: In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Date: August 2015
Creator: Mitheo, Yannick K.

Hydraulic Activity in Synthetic and Commercial Slags

Description: Slag, by itself, shows very little hydraulic activity. However, hydration is greatly accelerated by incorporation of the slag with Portland cement. This phenomenon is due to the activating role of calcium hydroxide released from the hydration of Portland cement. This study was aimed at finding other activators that will increase hydration in both synthetic and commercial slags. The effects of chemical composition and the aggregation state of the slag on the hydration process were also investigated. For the synthetic slags, the aggregation state was altered by different quenching techniques. The chemical composition was varied by synthesizing a series of slags. The degree of hydration was studied by developing a thermogravimetric analysis technique and the glass content was determined using microscopy. Minerals were determined using powder x-ray diffraction analysis.
Date: May 1982
Creator: Saad, Bahruddin bin

Brainstem Lipids' Relationship to Death

Description: Previous work relating postmortem findings with cause of death have focused on the vitreous portion of the body. This research investigated the link between phospholipids in the brainstem and cause of death. The lipids were extracted by the Folch extraction method and then separated by High Performance Thin Layer Chromatography. These techniques gave excellent separation and resolution. Results showed no link between cause of death and the type of lipids found in the brainstem after death.
Date: December 1982
Creator: Schrynemeeckers, Patrick J.

A Study of Silver: an Alternative Maldi Matrix for Low Weight Compounds and Mass Spectrometry Imaging

Description: Soft-landing ion mobility has applicability in a variety of areas. The ability to produce material and collect a sufficient amount for further analysis and applications is the key goal of this technique. Soft-landing ion mobility has provided a way to deposit material in a controllable fashion, and can be tailored to specific applications. Changing the conditions at which soft-landing ion mobility occurs effects the characteristics of the resulting particles (size, distribution/coverage on the surface). Longer deposition times generated more material on the surface; however, higher pressures increased material loss due to diffusion. Larger particles were landed when using higher pressures, and increased laser energy at ablation. The utilization of this technique for the deposition of silver clusters has provided a solvent free matrix application technique for MALDI-MS. The low kinetic energy of incident ions along with the solvent free nature of soft-landing ion mobility lead to a technique capable of imaging sensitive samples and low mass analysis. The lack of significant interference as seen by traditional organic matrices is avoided with the use of metallic particles, providing a major enhancement in the ability to analyze low mass compounds by MALDI.
Date: May 2014
Creator: Walton, Barbara Lynn

Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives

Description: This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Municipal Solid Waste (MSW) and disposing of nearly ninety percent of it in landfills, it is easy to understand why American landfills are approaching capacity. One alternative to landfilling is to process the MSW into RDF. There are technical and environmental problems associated with RDF. This work provides some answers concerning the amount of PAH and PCB emissions generated via the combustion of RDF with coal. It was found that the Ca(OH)2 binder greatly reduced both the PAH and the PCB emissions. In fact, PAH emissions at the ten-percent level were reduced more by using the binder than by the pollution control equipment. If the Ca(0H)2 binder can reduce not only PAH and PCB emissions, but also other noxious emissions, such as acid gases or dioxin, RDF technology could soon be the answer to the current landfill problems. The second portion of this work focused on developing a method to analyze stamp adhesives nondestructively. Using this method, it was fairly easy to differentiate among the three different types of adhesives that have been used by the United States Postal Service: gum arabic, dextrin, and polyvinyl alcohol. Differences caused by changes in chemicals added to the adhesives were also detected. Also, forgeries were detected with as much success, if not more, than by conventional methods. This work also led to the construction of equipment that allows large ...
Date: May 1989
Creator: Poslusny, Matthew

Model Development for the Catalytic Calcination of Calcium Carbonate

Description: Lime is one of the largest manufactured chemicals in the United States. The conversion of calcium carbonate into calcium oxide is an endothermic reaction and requires approximately two to four times the theoretical quantity of energy predicted from thermodynamic analysis. With the skyrocketing costs of fossil fuels, how to decrease the energy consumption in the calcination process has become a very important problem in the lime industry. In the present study, many chemicals including lithium carbonate, sodium carbonate, potassium carbonate, lithium chloride, magnesium chloride, and calcium chloride have been proved to be the catalysts to enhance the calcination rate of calcium carbonate. By mixing these chemicals with pure calcium carbonate, these additives can increase the calcination rate of calcium carbonate at constant temperatures; also, they can complete the calcination of calcium carbonate at relatively low temperatures. As a result, the energy required for the calcination of calcium carbonate can be decreased. The present study has aimed at developing a physical model, which is called the extended shell model, to explain the results of the catalytic calcination. In this model, heat transfer and mass transfer are two main factors used to predict the calcination rate of calcium carbonate. By using the extended shell model, not only the catalytic calcination but also the inhibitive calcination of calcium carbonate have been explained.
Date: December 1987
Creator: Huang, Jin-Mo

Methods Development for Simultaneous Determination of Anions and Cations by Ion Chromatography

Description: The problem with which this research is concerned is the determination of inorganic anions and cations with single injection ion chromatography. Direct detection of the separated analyte ions occurs after the analyte ions have passed through ion-exchange resins where they are separated according to their affinity for the ion-exchange resin active sites. The techniques involve the use of essentially a non-suppressed ion chromatographic system followed by a suppressed ion chromatographic system. With this system it is possible to accomplish both qualitative and quantitative determinations.
Date: May 1987
Creator: Jones, Vonda K. (Vonda Kaye)

Calcium Silicates: Glass Content and Hydration Behavior

Description: Pure, MgO doped and B2C3 doped monocalcium, dicalcium, and tricalcium silicates were prepared with different glass contents. Characterization of the anhydrous materials was carried out using optical microscopy, infrared absorption spectroscopy, and X-ray powder diffraction. The hydration of these compounds was studied as a function of the glass contents. The hydration studies were conducted at 25°C. Water/solid ratios of 0.5, 1, 10, and 16 were used for the various experiments. The hydration behavior was monitored through calorimetry, conductometry, pH measurements, morphological developments by scanning electron microscopy, phase development by X-ray powder diffraction, and percent combined water by thermogravimetry. A highly sensitive ten cell pseudo-adiabatic microcalorimeter was designed and constructed for early hydration studies. Conductometry was found to be of great utility in monitoring the hydration of monocalcium silicate and the borate doped dicalcium silicates.
Date: August 1987
Creator: Zgambo, Thomas P. (Thomas Patrick)

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the ...
Date: August 1990
Creator: Moore, Paul, 1962-

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into production, the cost of manufacturing microchips could be lowered. This research was designed to investigate the loss of selectivity for W-CVD in an attempt to understand the processes which lead to its occurrence. The effects of passivating the oxide surface with methanol against the formation of tungsten nuclei were studied. It was found that the methanol dissociates at oxide surface defect sites and blocks such sites from becoming tungsten nucleation sites. The effect of reactant partial pressure ratio on selectivity was also studied. It was found that as the reactant partial pressures are varied there are significant changes in the ...
Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)

Experimental Determination of L, Ostwald Solubility Solute Descriptor for Illegal Drugs By Gas Chromatography and Analysis By the Abraham Model

Description: The experiment successfully established the mathematical correlations between the logarithm of retention time of illegal drugs with GC system and the solute descriptor L from the Abraham model. the experiment used the method of Gas Chromatography to analyze the samples of illegal drugs and obtain the retention time of each one. Using the Abraham model to calculate and analyze the sorption coefficient of illegal drugs is an effective way to estimate the drugs. Comparison of the experimental data and calculated data shows that the Abraham linear free energy relationship (LFER) model predicts retention behavior reasonably well for most compounds. It can calculate the solute descriptors of illegal drugs from the retention time of GC system. However, the illegal drugs chosen for this experiment were not all ideal for GC analysis. HPLC is the optimal instrument and will be used for future work. HPLC analysis of the illegal drug compounds will allow for the determination of all the solute descriptors allowing one to predict the illegal drugs behavior in various Abraham biological and medical equations. the results can be applied to predict the properties in biological and medical research which the data is difficult to measure. the Abraham model will predict more accurate results by increasing the samples with effective functional groups.
Date: May 2012
Creator: Wang, Zhouxing

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Description: The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead zirconate titanate (PZT) thin films. In this study, we fabricated cerium-doped PZT films (molar ratio of Zr/Ti:: 0.5:0.5) via cathodic electrodeposition on the indium tin oxide ( ITO) coated glass substrate. In the preparation process, the PZT films were modified by adding a small amount of cerium dopants, which led to the formation of Ce-doped PZT films after sintering at high temperatures. The fabricated PZT films on the ITO coated glass substrate may be used as electro-optic devices in the industrial application.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Yuan, Qiuhua

The Revival of Electrochemistry: Electrochemical Deposition of Metals in Semiconductor Related Research

Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V versus Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which involves sticking the scotch tape on the sample, then peeling off the tape and observing if the copper film peels off or not. Characterization by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicated that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics does not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small Cu nuclei are observable by SEM upon deposition at higher negative overpotentials, while only large nuclei (~ 1 micron or larger) are observed upon deposition at less negative potentials. Osmium metal has been successfully electrodeposited directly onto p-Si (100) from both Os3+ and Os4+ in both sulfuric and perchloric baths. This electrochemical deposition of osmium metal can provide sufficient amount of osmium which overcome ion beam implantation limitations. The deposited metal can undergo further processing to form osmium silicides, such as Os2Si3, which can be used as optical active materials. The higher osmium concentration results in large deposition currents and ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2005
Creator: Wang, Chen

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Description: An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed oxygen formation than water vapor exposure, but an inhibition of surface oxide formation relative that of the unmodified Ru(poly) surface is still observed. Studies with combined electrochemical and XPS techniques show that the iodine surface adlayer remained on top of the surface after cycles of overpotential electrodeposition/dissolution of copper on both Ru(poly) and Ru(0001) electrodes. These results indicate the potential bifunctionality of iodine layer to both passivate the Ru surface in the microelectronic processing and to act as a surfactant for copper electrodeposition. The electrodeposition of Cu on Ru(0001) or polycrystalline Ru was studied using XPS with combined ultrahigh vacuum/electrochemistry methodology (UHV-EC) in 0.1 M HClO4 with Cu(ClO4)2 concentrations ranging from 0.005 M to 0.0005 M, and on polycrystalline Ru in a 0.05M H2SO4/0.005 M CuSO4/0.001 M NaCl solution. The electrochemical data show well-defined cyclic voltammograms (CV) with a Cu underpotential deposition (UPD) peak and overpotential deposition (OPD) peak. XPS spectra of Ru electrodes emersed from perchloric acid solution at cathodic potentials indicate that ClO4- anions dissociate to yield specifically adsorbed Cl and ClOx species. Subsequent Cu deposition results in the formation of a thin, insoluble Cu(II) film with Cu(I) underneath. In contrast, similar deposition on polycrystalline Ru in the sulfuric acid/Cu sulfate solution with NaCl added yields only Cu(0), indicating that the formation of Cu(II) and Cu(I) involves both Cl and perchlorate interactions with the ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2005
Creator: Lei, Jipu

Electrodeposition of adherent copper film on unmodified tungsten.

Description: Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small Cu nuclei are observable by SEM upon deposition at higher negative overpotentials, while only large nuclei (~ 1 micron or larger) are observed upon deposition at less negative potentials.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Wang, Chen

Passivation effects of surface iodine layer on tantalum for the electroless copper deposition.

Description: The ability to passivate metallic surfaces under non-UHV conditions is not only of fundamental interests, but also of growing practical importance in catalysis and microelectronics. In this work, the passivation effect of a surface iodine layer on air-exposed Ta for the copper electroless deposition was investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Although the passivation effect was seriously weakened by the prolonged air exposure, iodine passivates the Ta substrate under brief air exposure conditions so that enhanced copper wetting and adhesion are observed on I-passivated Ta relative to the untreated surface.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Liu, Jian

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Description: An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also presents electroplating of Cu on ruthenium (Ru), which a priori is a promising barrier material for Cu interconnects in the sub 0.13 μm generation integrated circuits (ICs). Cu plates on Ru with over 90% efficiency. The electrochemical nucleation and growth studies using the potentiostatic current transient method showed a predominantly progressive nucleation of Cu on Ru. This was also supported by SEM imaging, which showed that continuous thin films of Cu (ca. 400 Å) with excellent conformity could be plated over Ru without dendrite formation. Scotch tape peel tests and SEM on Cu/Ru samples both at room temperature (RT) and ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan

Thermodynamics of the Abraham General Solvation Model: Solubility and Partition Aspects

Description: Experimental mole fraction solubilities of several carboxylic acids (2-methoxybenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-chloro-3-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid,2-methylbenzoic acid and ibuprofen) and 9-fluorenone, thianthrene and xanthene were measured in a wide range of solvents of varying polarity and hydrogen-bonding characteristics. Results of these measurements were used to calculate gas-to-organic solvent and water-to-organic solvent solubility ratios, which were then substituted into known Abraham process partitioning correlations. The molecular solute descriptors that were obtained as the result of these computations described the measured solubility data to within an average absolute deviation of 0.2 log units. The calculated solute descriptors also enable one to estimate many chemically, biologically and pharmaceutically important properties for the ten solutes studied using published mathematical correlations.
Date: August 2006
Creator: Stovall, Dawn Michele

The synthesis and study of poly(N-isopropylacrylamide)/poly(acrylic acid) interpenetrating polymer network nanoparticle hydrogels.

Description: Homogeneous hydrogels made of an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAm) and poly(acrylic acid) (PAAc) are synthesized by a two-step process; first making PNIPAm hydrogels and then interpenetrating acrylic acid throughout the hydrogel through polymerization. The kinetic growth of the IPN is plotted and an equation is fitted to the data. When diluted to certain concentrations in water, the hydrogels show reversible, inverse thermal gelation at about 34°C. This shows unique application to the medical field, as the transition is just below body temperature. A drug release experiment is performed using high molecular weight dyes, and a phase diagram is created through observation of the purified, concentrated gel at varying concentrations and temperatures.
Date: August 2006
Creator: Crouch, Stephen Wallace

FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface

Description: Plasma polymerization techniques were used to synthesize and deposit hydrogel on silicon (Si) substrate. Hydrogel is a network of polymer chains that are water-insoluble and has a high degree of flexibility. The various fields of applications of hydrogel include drug release, biosensors and tissue engineering etc. Hydrogel synthesized from different monomers possess a common property of moisture absorption. In this work two monomers were used namely 1-amino-2-propanol (1A2P) and 2(ethylamino)ethanol (2EAE) to produce polymer films deposited on Si ATR crystal. Their moisture uptake property was tested using FTIR-ATR technique. This was evident by the decrease in -OH band in increasing N2 purging time of the films. Secondly, two monomer compounds namely vinyl acetic acid and glycidyl methacrylate which have both amine and carboxylic groups are used as solid surface for the immobilization of bovine serum albumin (BSA). Pulsed plasma polymerization was used to polymerize these monomers with different duty cycles. Initial works in this field were all about protein surface adsorption. But more recently, the emphasis is on covalent bonding of protein on to the surface. This immobilization of protein on solid surface has a lot of applications in the field of biochemical studies. The polymerization of vinyl acetic acid and glycidyl methacrylate were shown as successful method to attach protein on them. Chemical mechanical polishing (CMP) of Cu is one of the processes in the integrated chips manufacturing industry. Benzotriazole is one of the constituents of this CMP slurry used as corrosion inhibitor for Cu. Benzotriazole (C6H5N3) is a nitrogen heterocyclic derivative having three nitrogen atoms, each with an unshared pair of electrons, forming five-membered ring structure. This molecule coordinates with Cu atoms by loosing a proton from one of its nitrogen atom and thereby forming a film which is polymeric in nature that prevents further oxidation of Cu. ...
Date: December 2007
Creator: Pillai, Karthikeyan

Study of Ruthenium and Ruthenium Oxide's Electrochemical Properties and Application as a Copper Diffusion Barrier

Description: As a very promising material of copper diffusion barrier for next generation microelectronics, Ru has already obtained a considerable attention recently. In this dissertation, we investigated ruthenium and ruthenium oxide electrochemical properties and the application as a copper diffusion barrier. Cu under potential deposition (UPD) on the RuOx formed electrochemically was first observed. Strong binding interaction, manifesting by the observed Cu UPD process, exists between Cu and Ru as well as its conductive ruthenium oxide. Since UPD can be conformally formed on the electrode surface, which enable Ru and RuOx has a potential application in the next generation anode. The [Cl-] and pH dependent experiment were conducted, both of them will affect UPD Cu on Ru oxide. We also found the Cu deposition is thermodynamically favored on RuOx formed electrochemically. We have studied the Ru thin film (5nm) as a copper diffusion barrier. It can successfully block Cu diffusion annealed at 300 oC for 10min under vacuum, and fail at 450 oC. We think the silicidation process at the interface between Ru and Si. PVD Cu/Ru/Si and ECP Cu/Ru/Si were compared each other during copper diffusion study. It was observed that ECP Cu is easy to diffuse through Ru barrier. The function of RuOx in diffusion study on Cu/Ru/Si stack was discussed. In pH 5 Cu2+ solution, Ru and Pt electrochemical behavior were investigated. A sharp difference was observed compared to low pH value. The mechanism in pH 5 Cu2+ solution was interpreted. An interesting compound (posnjakite) was obtained during the electrochemical process. An appropriate formation mechanism was proposed. Also Cu2O was formed in the process. We found oxygen reduction reaction is a key factor to cause this phenomenon.
Date: August 2005
Creator: Zhang, Yibin