UNT Libraries - 32 Matching Results

Search Results

An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

Description: This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.
Date: May 2016
Creator: Le, Thu Anh

Euclidean Rings

Description: The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.
Date: May 1974
Creator: Fecke, Ralph Michael

Absolute Continuity and the Integration of Bounded Set Functions

Description: The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
Date: May 1975
Creator: Allen, John Houston

Properties of Some Classical Integral Domains

Description: Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.
Date: May 1975
Creator: Crawford, Timothy B.

Valuations on Fields

Description: This thesis investigates some properties of valuations on fields. Basic definitions and theorems assumed are stated in Capter I. Chapter II introduces the concept of a valuation on a field. Real valuations and non-Archimedean valuations are presented. Chapter III generalizes non-Archimedean valuations. Examples are described in Chapters I and II. A result is the theorem stating that a real valuation of a field K is non-Archimedean if and only if $(a+b) < max4# (a), (b) for all a and b in K. Chapter III generally defines a non-Archimedean valuation as an ordered abelian group. Real non-Archimedean valuations are either discrete or nondiscrete. Chapter III shows that every valuation ring identifies a non-Archimedean valuation and every non-Archimedean valuation identifies a valuation ring.
Date: May 1977
Creator: Walker, Catherine A.

An Existence Theorem for an Integral Equation

Description: The principal theorem of this thesis is a theorem by Peano on the existence of a solution to a certain integral equation. The two primary notions underlying this theorem are uniform convergence and equi-continuity. Theorems related to these two topics are proved in Chapter II. In Chapter III we state and prove a classical existence and uniqueness theorem for an integral equation. In Chapter IV we consider the approximation on certain functions by means of elementary expressions involving "bent line" functions. The last chapter, Chapter V, is the proof of the theorem by Peano mentioned above. Also included in this chapter is an example in which the integral equation has more than one solution. The first chapter sets forth basic definitions and theorems with which the reader should be acquainted.
Date: May 1985
Creator: Hunt, Cynthia Young

Interpolation and Approximation

Description: In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation problem is proven. Then the problem of how to represent this unique solution is discussed. Finally, the error involved in the interpolation and the convergence of the interpolation process is developed. In the second chapter a theorem about the uniform approximation to continuous functions is proven. Then the best approximation and the least squares approximation (a special case of best approximation) is discussed. In the third chapter orthogonal polynomials as discussed as well as bounded linear functionals in Hilbert spaces, interpolation and approximation and approximation in Hilbert space.
Date: May 1977
Creator: Lal, Ram

Some Properties of Noetherian Rings

Description: This paper is an investigation of several basic properties of noetherian rings. Chapter I gives a brief introduction, statements of definitions, and statements of theorems without proof. Some of the main results in the study of noetherian rings are proved in Chapter II. These results include proofs of the equivalence of the maximal condition, the ascending chain condition, and that every ideal is finitely generated. Some other results are that if a ring R is noetherian, then R[x] is noetherian, and that if every prime ideal of a ring R is finitely generated, then R is noetherian.
Date: May 1986
Creator: Vaughan, Stephen N. (Stephen Nick)

Metric Half-Spaces

Description: This paper is a study of some of the basic properties of the metric half-space topology, a topology on a set which is derived from a metric on the set. In the first it is found that in a complete inner product space, the metric half-space topology is the same as one defined in terms of linear functionals on the space. In the second it is proven that in Rn the metric half-space topology is the same as the usual metric topology. In the third theorem it is shown that in a certain sense the nature of the metric halfspace topology generated by a norm on the space determines whether the norm is quadratic, that is to say, whether or not there exists an inner product on the space with the property that |x|^2=(x,x) for all x in the space.
Date: May 1972
Creator: Dooley, Willis L.

Spaces of H-Integrable Functions

Description: In this thesis we consider integrals of a certain class of interval functions. Specifically we consider a nondegenerate number interval [a,b], a real valued function m, defined and nondecreasing on [a,b], and the set Hm, of real valued functions f, defined on [a,b] such that: 1) f(a)=0; 2) for each subinterval [p,q] of [a,b], if m(q)-m(p)=0, then f(q)-f(p)=0; and 3) the set of all sums of the form Σ(Δf)2/Δm for subdivisions D of [a,b] is bounded above.
Date: May 1968
Creator: Wittenmyer, Eugene L.

Continuous Solutions of Laplace's Equation in Two Variables

Description: In mathematical physics, Laplace's equation plays an especially significant role. It is fundamental to the solution of problems in electrostatics, thermodynamics, potential theory and other branches of mathematical physics. It is for this reason that this investigation concerns the development of some general properties of continuous solutions of this equation.
Date: May 1968
Creator: Johnson, Wiley A.


Description: The primary objective of this work is to discuss some of the elementary properties of near-rings as they are related to rings. This study is divided into three subdivisions: (1) Basic Properties and Concepts of Near-Rings; (2) The Ideal Structure of Near-Rings; and (3) Homomorphism and Isomorphism of Near-Rings.
Date: May 1972
Creator: Baker, Edmond L.

Radicals of a Ring

Description: The problem with which this investigation is concerned is that of determining the properties of three radicals defined on an arbitrary ring and determining when these radicals coincide. The three radicals discussed are the nil radical, the Jacobsson radical, and the Brown-McCoy radical.
Date: May 1971
Creator: Crawford, Phyllis Jean

Ideals in Quadratic Number Fields

Description: The purpose of this thesis is to investigate the properties of ideals in quadratic number fields, A field F is said to be an algebraic number field if F is a finite extension of R, the field of rational numbers. A field F is said to be a quadratic number field if F is an extension of degree 2 over R. The set 1 of integers of R will be called the rational integers.
Date: May 1971
Creator: Hamilton, James C.

A Genesis for Compact Convex Sets

Description: This paper was written in response to the following question: what conditions are sufficient to guarantee that if a compact subset A of a topological linear space L^3 is not convex, then for every point x belonging to the complement of A relative to the convex hull of A there exists a line segment yz such that x belongs to yz and y belongs to A and z belongs to A? Restated in the terminology of this paper the question bay be given as follow: what conditions may be imposed upon a compact subset A of L^3 to insure that A is braced?
Date: May 1969
Creator: Ferguson, Ronald D.