UNT Libraries - 4 Matching Results

Search Results

Deposition and Characterization of Pentacene Film.

Description: Many organic materials have been studied to be used as semiconductors, few of them being pentacene and polythiophene. Organic semiconductors have been investigated to make organic thin film transistors. Pentacene has been used in the active region of the transistors. Transistors fabricated with pentacene do not have very high mobility. But in some applications, high mobility is not needed. In such application other properties of organic transistors are used, such as, ease of production and flexibility. Organic thin film transistors (OTFT) can find use as low density storage devices, such as smart cards or I.D. tags, and displays. OTFT are compatible with polymeric substrates and hence can find use as flexible computer screens. This project aims at making 'smart clothes', the cheap way, with pentacene based OTFT. This problem in lieu of thesis describes a way to deposit pentacene films and characterize it. Pentacene films were deposited on substrates and characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The substrate used was ~1500Å platinum on silicon wafer or bare silicon wafer. was used. A deposition system for vacuum deposition of pentacene was assembled. The XRD data for deposited pentacene films shows the presence of two phases, single crystal phase (SCP) and thin film phase (TFP), and the increase in percentage of SCP with increase in substrate temperature during deposition or by annealing the deposited film, in vacuum, at 80°C.
Date: December 2003
Creator: Singh, Nidhi

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the ...
Date: December 2003
Creator: Bilyeu, Bryan

Characterization of Methyltrimethoxysilane Sol-Gel Polymerization and the Resulting Aerogels.

Description: Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined to be 0.86, which is considerably higher than that predicted by the current accepted theories. Both chemical and physical origins of this high value were suggested. Aerogels dried by supercritical CO2 extraction were characterized by FTIR, 13C and 29Si solid-state NMR and nitrogen sorption. The existence of three residual groups (Si-OH, Si-OCH3, and Si-OC2H5) was confirmed, but their concentrations are very low compared to silica aerogels. The low concentrations of the residual groups, along with the presence of Si-CH3, make MTMS aerogels permanently hydrophobic. To enhance applicability, MTMS aerogels were successfully prepared that demonstrated shrinkage less than 10% after supercritical ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Dong, Hanjiang

Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.

Description: Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among materials, but more important, aided the mapping of the elastic and plastic contributions. These are essential concepts in fracture analysis.
Date: May 2003
Creator: Hernandez-Luna, Alejandro