UNT Libraries - 235 Matching Results

Search Results

Automated GUI Tests Generation for Android Apps Using Q-learning

Description: Mobile applications are growing in popularity and pose new problems in the area of software testing. In particular, mobile applications heavily depend upon user interactions and a dynamically changing environment of system events. In this thesis, we focus on user-driven events and use Q-learning, a reinforcement machine learning algorithm, to generate tests for Android applications under test (AUT). We implement a framework that automates the generation of GUI test cases by using our Q-learning approach and compare it to a uniform random (UR) implementation. A novel feature of our approach is that we generate user-driven event sequences through the GUI, without the source code or the model of the AUT. Hence, considerable amount of cost and time are saved by avoiding the need for model generation for generating the tests. Our results show that the systematic path exploration used by Q-learning results in higher average code coverage in comparison to the uniform random approach.
Date: May 2017
Creator: Koppula, Sreedevi

Extracting Useful Information from Social Media during Disaster Events

Description: In recent years, social media platforms such as Twitter and Facebook have emerged as effective tools for broadcasting messages worldwide during disaster events. With millions of messages posted through these services during such events, it has become imperative to identify valuable information that can help the emergency responders to develop effective relief efforts and aid victims. Many studies implied that the role of social media during disasters is invaluable and can be incorporated into emergency decision-making process. However, due to the "big data" nature of social media, it is very labor-intensive to employ human resources to sift through social media posts and categorize/classify them as useful information. Hence, there is a growing need for machine intelligence to automate the process of extracting useful information from the social media data during disaster events. This dissertation addresses the following questions: In a social media stream of messages, what is the useful information to be extracted that can help emergency response organizations to become more situationally aware during and following a disaster? What are the features (or patterns) that can contribute to automatically identifying messages that are useful during disasters? We explored a wide variety of features in conjunction with supervised learning algorithms to automatically identify messages that are useful during disaster events. The feature design includes sentiment features to extract the geo-mapped sentiment expressed in tweets, as well as tweet-content and user detail features to predict the likelihood of the information contained in a tweet to be quickly spread in the network. Further experimentation is carried out to see how these features help in identifying the informative tweets and filter out those tweets that are conversational in nature.
Date: May 2017
Creator: Neppalli, Venkata Kishore

Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester

Description: This work presents an investigation of a piezoelectric sensor based energy harvesting system, which collects energy from the surrounding environment. Increasing costs and scarcity of fossil fuels is a great concern today for supplying power to electronic devices. Furthermore, generating electricity by ordinary methods is a complicated process. Disposal of chemical batteries and cables is polluting the nature every day. Due to these reasons, research on energy harvesting from renewable resources has become mandatory in order to achieve improved methods and strategies of generating and storing electricity. Many low power devices being used in everyday life can be powered by harvesting energy from natural energy resources. Power overhead and power energy efficiency is of prime concern in electronic circuits. In this work, an energy harvester is modeled and simulated in Simscape™ for the functional analysis and comparison of achieved outcomes with previous work. Results demonstrate that the harvester produces power in the 0 μW to 100 μW range, which is an adequate amount to provide supply to low power devices. Power efficiency calculations also demonstrate that the implemented harvester is capable of generating and storing power for low power pervasive applications.
Date: May 2017
Creator: Dhayal, Vandana Sultan Singh

Determining Whether and When People Participate in the Events They Tweet About

Description: This work describes an approach to determine whether people participate in the events they tweet about. Specifically, we determine whether people are participants in events with respect to the tweet timestamp. We target all events expressed by verbs in tweets, including past, present and events that may occur in future. We define event participant as people directly involved in an event regardless of whether they are the agent, recipient or play another role. We present an annotation effort, guidelines and quality analysis with 1,096 event mentions. We discuss the label distributions and event behavior in the annotated corpus. We also explain several features used and a standard supervised machine learning approach to automatically determine if and when the author is a participant of the event in the tweet. We discuss trends in the results obtained and devise important conclusions.
Date: May 2017
Creator: Sanagavarapu, Krishna Chaitanya

Object Recognition Using Scale-Invariant Chordiogram

Description: This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
Date: May 2017
Creator: Tonge, Ashwini Kishor

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

Description: In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by current practices used in BCI App stores and then describe some countermeasures that could be used to mitigate the privacy threats. Also, develop a prototype which gives the BCI app users a choice to restrict their brain signal dynamically.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Bhalotiya, Anuj Arun

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

Description: The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Koppikar, Samir Dilip

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Description: Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Xie, Junfei

Network Security Tool for a Novice

Description: Network security is a complex field that is handled by security professionals who need certain expertise and experience to configure security systems. With the ever increasing size of the networks, managing them is going to be a daunting task. What kind of solution can be used to generate effective security configurations by both security professionals and nonprofessionals alike? In this thesis, a web tool is developed to simplify the process of configuring security systems by translating direct human language input into meaningful, working security rules. These human language inputs yield the security rules that the individual wants to implement in their network. The human language input can be as simple as, "Block Facebook to my son's PC". This tool will translate these inputs into specific security rules and install the translated rules into security equipment such as virtualized Cisco FWSM network firewall, Netfilter host-based firewall, and Snort Network Intrusion Detection. This tool is implemented and tested in both a traditional network and a cloud environment. One thousand input policies were collected from various users such as staff from UNT departments' and health science, including individuals with network security background as well as students with a non-computer science background to analyze the tool's performance. The tool is tested for its accuracy (91%) in generating a security rule. It is also tested for accuracy of the translated rule (86%) compared to a standard rule written by security professionals. Nevertheless, the network security tool built has shown promise to both experienced and inexperienced people in network security field by simplifying the provisioning process to result in accurate and effective network security rules.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Ganduri, Rajasekhar

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Date: August 2016
Creator: Bravo-Salgado, Angel D

An Empirical Study of How Novice Programmers Use the Web

Description: Students often use the web as a source of help for problems that they encounter on programming assignments.In this work, we seek to understand how students use the web to search for help on their assignments.We used a mixed methods approach with 344 students who complete a survey and 41 students who participate in a focus group meetings and helped in recording data about their search habits.The survey reveals data about student reported search habits while the focus group uses a web browser plug-in to record actual search patterns.We examine the results collectively and as broken down by class year.Survey results show that at least 2/3 of the students from each class year rely on search engines to locate resources for help with their programming bugs in at least half of their assignments;search habits vary by class year;and the value of different types of resources such as tutorials and forums varies by class year.Focus group results exposes the high frequency web sites used by the students in solving their programming assignments.
Date: May 2016
Creator: Tula, Naveen

Learning from small data set for object recognition in mobile platforms.

Description: Did you stand at a door with a bunch of keys and tried to find the right one to unlock the door? Did you hold a flower and wonder the name of it? A need of object recognition could rise anytime and any where in our daily lives. With the development of mobile devices object recognition applications become possible to provide immediate assistance. However, performing complex tasks in even the most advanced mobile platforms still faces great challenges due to the limited computing resources and computing power. In this thesis, we present an object recognition system that resides and executes within a mobile device, which can efficiently extract image features and perform learning and classification. To account for the computing constraint, a novel feature extraction method that minimizes the data size and maintains data consistency is proposed. This system leverages principal component analysis method and is able to update the trained classifier when new examples become available . Our system relieves users from creating a lot of examples and makes it user friendly. The experimental results demonstrate that a learning method trained with a very small number of examples can achieve recognition accuracy above 90% in various acquisition conditions. In addition, the system is able to perform learning efficiently.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Liu, Siyuan

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Description: There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames in colonoscopy videos with very high accuracy in significantly less processing time even when clustering is used to reduce the training size by 10 times.
Date: December 2015
Creator: Dahal, Ashok

Towards Resistance Detection in Health Behavior Change Dialogue Systems

Description: One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Date: August 2015
Creator: Sarma, Bandita

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature characterizations, and 3) the use of overlapping bigrams as the textual working unit to assist in context analysis and reconstruction.
Date: August 2015
Creator: Bristow, Kelly H.

Unique Channel Email System

Description: Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Date: August 2015
Creator: Balakchiev, Milko

Integrity Verification of Applications on RADIUM Architecture

Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept of program invariants that can be used to learn the correct behavior of an application. I used Daikon, a tool to obtain dynamic likely invariants, and developed a method of observing these properties at runtime to verify the integrity. The integrity measurement component was implemented as a Python module on top of Volatility, a virtual machine introspection tool. My approach is a first step towards integrity attestation, using hypervisor-based introspection on RADIUM and a proof of concept of application-level measurement capability.
Date: August 2015
Creator: Tarigopula, Mohan Krishna

Radium: Secure Policy Engine in Hypervisor

Description: The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a secure access control policy engine will give it the ability to limit or empower a virtual domain system. It can also enable the creation of a service oriented model of guest virtual domains that have the ability to perform certain operations such as introspecting other virtual domain systems to determine the integrity or system state and report it to a remote entity.
Date: August 2015
Creator: Shah, Tawfiq M.

Automatic Removal of Complex Shadows From Indoor Videos

Description: Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Date: August 2015
Creator: Mohapatra, Deepankar

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of efficiently discovering non-causal factors are developed and proved. In addition, when the background knowledge is partially known, methods of graph decomposition are provided so as to reduce the number of conditioned variables. Experiments on both synthetic data and real epidemiological data indicate the provided methods are applicable to large-scale datasets and scalable for causal analysis in health data. Followed by the research methods and experiments, this dissertation gives thoughtful discussions on the reliability of causal discoveries computational health science research, complexity, and implications in health science research.
Date: August 2015
Creator: Liang, Yiheng

Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Description: POD (Point of Dispensing)-based emergency response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable sub-populations, resulting in access disparities during emergency response. Federal authorities emphasize on the need to identify sub-populations that cannot avail regular services during an emergency due to their special needs to ensure effective response. Vulnerable individuals require the targeted allocation of appropriate resources to serve their special needs. Devising schemes to address the needs of vulnerable sub-populations is essential for the effectiveness of response plans. This research focuses on data-driven computational methods to quantify and address vulnerabilities in response plans that require the allocation of targeted resources. Data-driven methods to identify and quantify vulnerabilities in response plans are developed as part of this research. Addressing vulnerabilities requires the targeted allocation of appropriate resources to PODs. The problem of resource allocation to PODs during public health emergencies is introduced and the variants of the resource allocation problem such as the spatial allocation, spatio-temporal allocation and optimal resource subset variants are formulated. Generating optimal resource allocation and scheduling solutions can be computationally hard problems. The application of metaheuristic techniques to find near-optimal solutions to the resource allocation problem in response plans is investigated. A vulnerability analysis and resource allocation framework that facilitates the demographic analysis of population data in the context of response plans, and the optimal allocation of resources with respect to the analysis are described.
Date: August 2015
Creator: Indrakanti, Saratchandra

Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Description: In recent years, the collection of genomic data has skyrocketed and databases of genomic data are growing at a faster rate than ever before. Although many computational methods have been developed to interpret these data, they tend to struggle to process the ever increasing file sizes that are being produced and fail to take advantage of the advances in multi-core processors by using parallel processing. In some instances, loss of accuracy has been a necessary trade off to allow faster computation of the data. This thesis discusses one such algorithm that has been developed and how changes were made to allow larger input file sizes and reduce the time required to achieve a result without sacrificing accuracy. An information entropy based algorithm was used as a basis to demonstrate these techniques. The algorithm dissects the distinctive patterns underlying genomic data efficiently requiring no a priori knowledge, and thus is applicable in a variety of biological research applications. This research describes how parallel processing and object-oriented programming techniques were used to process larger files in less time and achieve a more accurate result from the algorithm. Through object oriented techniques, the maximum allowable input file size was significantly increased from 200 mb to 2000 mb. Using parallel processing techniques allowed the program to finish processing data in less than half the time of the sequential version. The accuracy of the algorithm was improved by reducing data loss throughout the algorithm. Finally, adding user-friendly options enabled the program to use requests more effectively and further customize the logic used within the algorithm.
Date: August 2015
Creator: Danks, Jacob R.

Maintaining Web Applications Integrity Running on RADIUM

Description: Computer security attacks take place due to the presence of vulnerabilities and bugs in software applications. Bugs and vulnerabilities are the result of weak software architecture and lack of standard software development practices. Despite the fact that software companies are investing millions of dollars in the research and development of software designs security risks are still at large. In some cases software applications are found to carry vulnerabilities for many years before being identified. A recent such example is the popular Heart Bleed Bug in the Open SSL/TSL. In today’s world, where new software application are continuously being developed for a varied community of users; it’s highly unlikely to have software applications running without flaws. Attackers on computer system securities exploit these vulnerabilities and bugs and cause threat to privacy without leaving any trace. The most critical vulnerabilities are those which are related to the integrity of the software applications. Because integrity is directly linked to the credibility of software application and data it contains. Here I am giving solution of maintaining web applications integrity running on RADIUM by using daikon. Daikon generates invariants, these invariants are used to maintain the integrity of the web application and also check the correct behavior of web application at run time on RADIUM architecture in case of any attack or malware. I used data invariants and program flow invariants in my solution to maintain the integrity of web-application against such attack or malware. I check the behavior of my proposed invariants at run-time using Lib-VMI/Volatility memory introspection tool. This is a novel approach and proof of concept toward maintaining web application integrity on RADIUM.
Date: August 2015
Creator: Ur-Rehman, Wasi

Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Description: We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Date: May 2015
Creator: Janmohammadi, Siamak