UNT Libraries - 142 Matching Results

Search Results

MBE Growth and Characterization of Graphene on Well-Defined Cobalt Oxide Surfaces: Graphene Spintronics without Spin Injection

Description: The direct growth of graphene by scalable methods on magnetic insulators is important for industrial development of graphene-based spintronic devices, and a route towards substrate-induced spin polarization in graphene without spin injection. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction LEED, electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES) demonstrate the growth of Co3O4(111) and CoO(111) to thicknesses greater than 100 Å on Ru(0001) surfaces, by molecular beam epitaxy (MBE). The results obtained show that the formation of the different cobalt oxide phases is O2 partial pressure dependent under same temperature and vacuum conditions and that the films are stoichiometric. Electrical I-V measurement of the Co3O4(111) show characteristic hysteresis indicative of resistive switching and thus suitable for advanced device applications. In addition, the growth of Co0.5Fe0.5O(111) was also achieved by MBE and these films were observed to be OH-stabilized. C MBE yielded azimuthally oriented few layer graphene on the OH-terminated CoO(111), Co0.5Fe0.5O(111) and Co3O4(111). AES confirms the growth of (111)-ordered sp2 C layers. EELS data demonstrate significant graphene-to-oxide charge transfer with Raman spectroscopy showing the formation of a graphene-oxide buffer layer, in excellent agreement with previous theoretical predictions. XPS data show the formation of C-O covalent bonding between the oxide layer and the first monolayer (ML) of C. LEED data reveal that the graphene overlayers on all substrates exhibit C3V. The reduction of graphene symmetry to C3V – correlated with C-O bond formation – enables spin-orbit coupling in graphene. Consequences may include a significant band gap and room temperature spin Hall effect – important for spintronic device applications. The results suggest a general pattern of graphene/graphene oxide growth and symmetry lowering for graphene formation on the (111) surfaces of rocksalt-structured oxides.
Date: August 2017
Creator: Olanipekun, Opeyemi B

Microwave-Assisted Synthesis and Photophysical Properties of Poly-Imine Ambipolar Ligands and Their Rhenium(I) Carbonyl Complexes

Description: The phenomenon luminescence rigidochromism has been reported since the 1970s in tricarbonyldiimine complexes with a general formula [R(CO)3LX] using conventional unipolar diimine ligands such as 2,2;-bipyridine or 1,10-phenanthroline as L, and halogens or simple solvents as X. As a major part of this dissertation, microwave-assisted synthesis, purification, characterization and detailed photoluminescence studies of the complex fac-[ReCl(CO)3L], 1, where L = 4-[4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl]-N,N-diethylbenzenamine are reported. The employment of microwaves in the preparation of 1 decreased the reaction time from 48 to 2 hours compared to the conventional reflux method. Stoichiometry variations allows for selective preparation of either a mononuclear, 1, or binuclear, fac-[Re2Cl2(CO)6], 2, complex. The photophysical properties of 1 were analyzed finding that it possesses significant luminescence rigidochromism. The steady state photoluminescence emission spectra of 1 in solution shift from 550 nm in frozen media to 610 nm when the matrix becomes fluid. Moreover, a very sensitive emission spectral analysis of 0.1 K temperatures steps shows a smooth transition through the glass transition temperature of the solvent host. Furthermore, synthetic modifications to L have attained a family of ambipolar compounds that have tunable photophysical, thermophysical and other material properties that render them promising candidates for potential applications in organic electronics and/or sensors - either as is or for their future complexes with various transition metals and lanthanides.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Salazar Garza, Gustavo Adolfo

Design, Synthesis and Optoelectronic Properties of Monovalent Coinage Metal-Based Functional Materials toward Potential Lighting, Display and Energy-Harvesting Devices

Description: Groundbreaking progress in molecule-based optoelectronic devices for lighting, display and energy-harvesting technologies demands highly efficient and easily processable functional materials with tunable properties governed by their molecular/supramolecular structure variations. To date, functional coordination compounds whose function is governed by non-covalent weak forces (e.g., metallophilic, dπ-acid/dπ-base stacking, halogen/halogen and/or d/π interactions) remain limited. This is unlike the situation for metal-free organic semiconductors, as most metal complexes incorporated in optoelectronic devices have their function determined by the properties of the monomeric molecular unit (e.g., Ir(III)-phenylpyridine complexes in organic light-emitting diodes (OLEDs) and Ru(II)-polypyridyl complexes in dye-sensitized solar cells (DSSCs)). This dissertation represents comprehensive results of both experimental and theoretical studies, descriptions of synthetic methods and possible application allied to monovalent coinage metal-based functional materials. The main emphasis is given to the design and synthesis of functional materials with preset material properties such as light-emitting materials, light-harvesting materials and conducting materials. In terms of advances in fundamental scientific phenomena, the major highlight of the work in this dissertation is the discovery of closed-shell polar-covalent metal-metal bonds manifested by ligand-unassisted d10-d10 covalent bonds between Cu(I) and Au(I) coinage metals in the ground electronic state (~2.87 Å; ~45 kcal/mol). Moreover, this dissertation also reports pairwise intermolecular aurophilic interactions of 3.066 Å for an Au(I) complex, representing the shortest ever reported pairwise intermolecular aurophilic distances among all coinage metal(I) cyclic trimetallic complexes to date; crystals of this complex also exhibit gigantic luminescence thermochromism of 10,200 cm-1 (violet to red). From applications prospective, the work herein presents monovalent coinage metal-based functional optoelectronic materials such as heterobimetallic complexes with near-unity photoluminescence quantum yield, metallic or semiconducting integrated donor-acceptor stacks and a new class of Au(III)-based black absorbers with cooperative intermolecular iodophilic (I…I) interactions that sensitize the harvesting of all UV, all visible, and a broad spectrum of near-IR ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Ghimire, Mukunda Mani

Elucidation of Photoinduced Energy and Electron Transfer Mechanisms in Multimodular Artificial Photosynthetic Systems

Description: Multimodular designs of electron donor-acceptor systems are the ultimate strategy in fabricating antenna-reaction center mimics for artificial photosynthetic applications. The studied photosystems clearly demonstrated efficient energy transfer from the antenna system to the primary electron donor, and charge stabilization of the radical ion pair achieved with the utilization of secondary electron donors that permits either electron migration or hole transfer. Moreover, the molecular arrangement of the photoactive components also influences the route of energy and electron transfer as observed from the aluminum(III) porphyrin-based photosystems. Furthermore, modulation of the photophysical and electronic properties of these photoactive units were illustrated from the thio-aryl substitution of subphthalocyanines yielding red-shifted Q bands of the said chromophore; hence, regulating the rate of charge separation and recombination in the subphthalocyanine-fullerene conjugates. These multicomponent photosystems has the potential to absorb the entire UV-visible-NIR spectrum of the light energy allowing maximum light-harvesting capability. Furthermore, it permits charge stabilization of the radical ion pair enabling the utilization of the transferred electron/s to be used by water oxidizing and proton reducing catalysts in full-scale artificial photosynthetic apparatuses.
Date: May 2017
Creator: Lim, Gary Lloyd Nogra

Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications

Description: Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. Applications of the membrane inlet technique have been applied to environmental detection of clandestine drug chemistries and pollutants. Emplacement of a mass spectrometer unit in a vehicle has allowed for large areas to be mapped, obtaining a rapid snapshot of the various concentrations and types of environmental pollutants present. Further refinements and miniaturization have allowed for a backpackable system for analysis in remote harsh environments. Inclusion of atmospheric dispersion modeling has yielded an analytical method of approximating upwind source locations, which has law enforcement, military, and environmental applications. The atmospheric dispersion theories have further been applied to an earth based separation, whereby chemical properties are used to approximate atmospheric mobility, and chemistries are further identified has a portable mass spectrometer is traversed closer to a point source.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Mach, Phillip Michael

Reductive Functionalization of 3D Metal-Methyl Complexes and Characterization of a Novel Dinitrogen Dicopper (I) Complex

Description: Reductive functionalization of methyl ligands by 3d metal catalysts and two possible side reactions has been studied. Selective oxidation of methane, which is the primary component of natural gas, to methanol (a more easily transportable liquid) using organometallic catalysis, has become more important due to the abundance of domestic natural gas. In this regard, reductive functionalization (RF) of methyl ligands in [M(diimine)2(CH3)(Cl)] (M: VII (d3) through CuII (d9)) complexes, has been studied computationally using density functional techniques. A SN2 mechanism for the nucleophilic attack of hydroxide on the metal-methyl bond, resulting in the formation of methanol, was studied. Similar highly exergonic pathways with very low energy SN2 barriers were observed for the proposed RF mechanism for all complexes studied. To modulate RF pathways closer to thermoneutral for catalytic purposes, a future challenge, paradoxically, requires finding a way to strengthen the metal-methyl bond. Furthermore, DFT calculations suggest that for 3d metals, ligand properties will be of greater importance than metal identity in isolating suitable catalysts for alkane hydroxylation in which reductive functionalization is used to form the C—O bond. Two possible competitive reactions for RF of metal-methyl complexes were studied to understand the factors that lower the selectivity of C—O bond forming reactions. One of them was deprotonation of the methyl group, which leads to formation of a methylene complex and water. The other side reaction was metal-methyl bond dissociation, which was assessed by calculating the bond dissociation free energies of M3d—CH3 bonds. Deprotonation was found to be competitive kinetically for most of the 1st row transition metal-methyl complexes (except for CrII, MnII and CuII), but less favorable thermodynamically as compared to reductive functionalization for all of the studied 1st row transition metal complexes. Metal-carbon bond dissociation was found to be less favorable than the RF reactions for most 3d transition ...
Date: May 2017
Creator: Fallah, Hengameh

Disease Tissue Imaging and Single Cell Analysis with Mass Spectrometry

Description: Cells have been found to have an inherent heterogeneity that has led to an increase in the development of single-cell analysis methods to characterize the extent of heterogeneity that can be found in seemingly identical cells. With an understanding of normal cellular variability, the identification of disease induced cellular changes, known as biomarkers, may become more apparent and readily detectable. Biomarker discovery in single-cells is challenging and needs to focus on molecules that are abundant in cells. Lipids are widely abundant in cells and play active roles in cellular signaling, energy metabolism, and are the main component of cellular membranes. The regulation of lipid metabolism is often disrupted or lost during disease progression, especially in cancer, making them ideal candidates as biomarkers. Challenges exist in the analysis of lipids beyond those of single-cell analysis. Lipid extraction solvents must be compatible with the lipid or lipids of interest. Many lipids are isobaric making mass spectrometry analysis difficult without separations. Single-cell extractions using nanomanipulation coupled to mass spectrometry has shown to be an excellent method for lipid analysis of tissues and cell cultures. Extraction solvents are tunable for specific lipid classes, nanomanipulation prevents damage to neighboring cells, and lipid separations are possible through phase dispersion. The most important aspect of single-cell analysis is that it uncovers the extent of cellular heterogeneity that exists among cellular populations that remains undetected during averaged sampling.
Date: May 2017
Creator: Hamilton, Jason S

Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes

Description: Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Using DFT, the transformation to methanol (CH3OH) from methane (CH4) was examined. The transition metal systems studied for this transformation included a model FeII complex. This first-row transition metal is an economical, Earth-abundant metal. The ligand set for this transformation includes a carbonyl ligand in one set of complexes as well as a phosphite ligand in another. The 3d Fe metal shows the ability to convert alkyls/aryls to their oxidized counterpart in an energetically favorable manner. Also, “superbasic” alkali metal amides were investigated to perform C—H bond cleavage. Toluene was the substrate of interest with Cs chosen to be the metal of interest because of the highly electropositive nature of this alkali metal. These highly electrophilic Cs metal systems allow for very favorable C—H bond scission with a toluene substrate. Finally, the amination and aziridination of C–H and C=C bonds, respectively, by a CuI reagent was studied. The mechanism was investigated using DFT calculations. Presently, these mechanisms involving the use of coinage metals are debated. Our DFT simulations shed some insight into how these transformations occur and ultimately how they can be manipulated.
Date: May 2015
Creator: Pardue, Daniel B.

Synthesis and Study of Metabolic Antagonists

Description: The central nature of nicotinamide in metabolic processes as a part of the NAD and NADP coenzyme systems prompted the synthesis of a series of N-nicotinyl- and N-isonicotinyl-N'- (substituted)ureas as potential metabolite antagonists of the vitamin. The compounds which were synthesized may be represented by the following general structure, where R = hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, cyclohexyl, phenyl and a-naphthyl. The observed toxicity of the N-nicotinyl-N'-(substituted)urea analogs may be attributed to the formation of a non-functional N-nicotinyl-N'-(substituted)urea-NAD analog through an exchange reaction catalyzed by NAD-ases in the cell. Support for this view was obtained by an in vitro enzymic synthesis of Nnicotinyl- N'-ethylurea-NAD analog employing N-nicotinyl-7- 1 4CN'- ethylurea. The labeled derivative was characterized through spectral, chromatographic, and chemical reaction studies.
Date: August 1973
Creator: Masingale, Robert Edesta

(4+2)-Cycloaddition Reactions of Ketenes; Pyranones

Description: This study deals with the (4+2)-cycloaddition reactions of 4-π electron compounds with ketenes. Chloroketenes were generated in situ from the corresponding chlorinated acid chlorides in the presence of the ketenophiles. Chloro-, dichloro- and diphenylketenes reacted with 1-methoxy-3-trimethylsiloxy-l,3-butadiene, and 2,4-bis(trimethylsiloxy)-1,3-pentadiene to yield the corresponding dihydropyrans. The dihydropyrans yielded substituted 4-pyranones on hydrolysis.
Date: August 1983
Creator: Agho, Michael O. (Michael Osarenogowu)

Thermal Reactions of Four-Membered Rings Containing Silicon or Germanium

Description: The synthesis of E- and Z-1,1,2,3-tetramethylsilacyclobutanes is described. Pyrolysis of either isomer at 398.2 °C provides the same products but in different amounts: propene, E- and Z-2-butene, allylethyldimethylsilane, dimethylpropylsilane, the respective geometric isomers, 1,1,2,3,3-pentamethyl-1,3-disilacyclobutane, 1,1, l-ethyldimethyl-2,2,2-vinyldimethyl-disilane and E- and Z-1,1,2,3,3,4-hexamethyl-1,3-disilacyclobutane. Mechanisms involving di- and trimethylsilenes are described for disilane formation and rate constants of the elementary steps for the fragmentation reactions are reported. Photochemically generated dimethylsilylene in the hydrocarbon solution inserts into the cyclic Ge-C or Si-C bonds of 1,1-dimethylgerma- or silacyclobutane to produce 1-germa-2-sila- or 1,2-disilacyclopentane. The relative reactivities of 1,1-dimethylgerma- and silacyclobutanes toward the dimethylsilylene have been determined. The carbenoid resulting from the cuprous chloride catalyzed decomposition of diazomethane at 25 °C in cyclohexane reacts with 1,1-dimethylgermacyclobutane to give, surprisingly 1,1,5,5-tetramethyl-1,5-digermacyclooctane as the major product. The reactions of the carbenoid with 1,1-dimethylsilacyclobutane are described. The kinetics of gas phase thermal decomposition of 1,1-dimethylgermacyclobutane has been studied over the temperature range, 684 - 751 K at pressures near 14 Torr. The Arrhenius parameters for the formation of ethylene are k_1 (s^-1) = 10^(14.6 ± 0.3) exp (62.7 ± 2.9 kcal mol^-1/RT) and those for the formation of propene and cyclopropane are k_2 (s^-1) = 10^(14.0 ± 0.1 ) exp (60.4 ± 2.8 kcal mol^-1/RT). Static gas phase pyrolyses of 1,1-dimethyl-lsilacyclobutene, DMSCB, in the presence of a variety of alkenes and alkynes at 260 - 365 °C have been studied. Our experimental results suggest that under these conditions the DMSCB ring opens to 1,1-dimethyl-l-silabutadiene, which either recyclizes to DMSCB or reacts with alkenes or alkynes in competing 4 + 2 and 2 + 2 cycloadditions.
Date: December 1988
Creator: Namavari, Mohammad, 1950-

Molecular Dynamics in the Liquid Phase by FT-NMR, FT-IR and Laser Raman Lineshape Analysis

Description: Nuclear magnetic resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids because nuclear spin-lattice relaxation times are dependent upon the details of molecular motion. The combined application of Raman and Infrared (IR) lineshape analysis can furnish more complete information to characterize the anisotropic rotation of molecules. Presented here are the studies of NMR relaxation times, together with Raman/IR Mneshape analysis of the solvent and temperature dependence of rotational diffusion in 1,3,5-tribromobenzene and 1,3,5-trifluorobenzene. In these experiments, it was found that the rotational diffusion constants calculated from Perrin's stick model were two to three times smaller than the measured values of D, and D,,. Similarly, rotational diffusion constants predicted by the Hu-Zwanzig slip model were too large by a factor of 2. Application of the newer Hynes-Kapral-Weinberg model furnished rotational diffusion constants that were in reasonable agreement with the experimental results. The vibrational peak frequencies and relaxation times of the isotropic Raman spectra of the υ1 modes of CD2Br2 and CHBr3 were studied in solution. The frequency shifts in non-interactive solvents were explained well on the basis of solution variations in the dispersion energy. In Lewis bases, the displacements were in some, but not all, cases greater than predicted. On the other hand, it was found that the vibrational relaxation times of the C-H/C-D modes decreased dramatically in all Lewis base solvents. Therefore, it was concluded that relaxation times of the υ1 modes, rather than frequency shifts, furnish a more reliable measure of hydrogen bonding interactions of halomethanes in solution.
Date: August 1988
Creator: Chen, Fu-Tseng Andy

Silenes and Silenoids in the Chemistry of Cyclopentadienylsilanes

Description: Evidence is presented that apparent silene products obtained from the metalation of cyclopentadienyldimethyl - chlorosilane either with tert-butyl1ithium or with methylenetriphenylphosphorane actually arise from the metalated starting material, a silenoid, rather than from a silafulvene intermediate. Trimethylmethoxysi1ane is shown to be an effective trap for dimethylsilafulvene. A new dimethylsilafulvene precursor, bis(dimethylmethoxysi1yl) cyclopentadiene, which gives high yields of dimethyldimethoxysi1ane and the silafulvene at temperatures as low as 240°C is reported.
Date: August 1986
Creator: Rozell, James M. (James Morris)

Synthesis and Characterization of Copper(II) Complexes

Description: A series of dihydroxy bridged copper(II) complexes of the type [(L)Cu(OH)₂Cu(L)]x₂ * nH₂0, where L is 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine or 1,10-phenanthroline, x is a counter ion, and n is the number of water molecules, was synthesized. In the case of monohydroxy bridged copper(II) complexes, we have found a new method of synthesis for [ (L)₂Cu(OH)Cu(L)₂ ] (ClO₄)₃, where L is 2,2'-bipyridine or 1,10-phenanthroline. We have synthesized five new monohydroxy bridged copper(II) complexes, thus increasing the number of monohydroxy bridged copper(II) complexes to nine. All complexes have been characterized by infrared spectroscopy, UV-visible spectroscopy, magnetic moments, and elemental analysis. The electron spin resonance results establish that the fulvic acids contain organic free radicals as an internal part of their molecular structure. The concentration of unpaired electrons will increase by increasing the pH. The unpaired electron in fulvic acid interacts with the unpaired electron on copper(II) through the Π system, and this will decrease the spin concentration of fulvic acid complexed with copper(II). The displacement of titration curve from a free ligand (fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phospherine, phosphothreonine, and 3-phosphoglyceric acid, to a ligand plus copper(II) (1:1 ratio) shows there is a strong interaction between copper(II) and the corresponding ligand. All complexes absorb UV-visible at 250-300 nm. The absorption intensity changes as a function of pH. Copper (II) forms a complex with fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phosphoserine, phosphothreonine, and 3-phosphoglyceric acid by the ratio of 1:3, 1:3, 1:1, 1:1, and 1:2, respectively.
Date: December 1984
Creator: Amani, Saeid

Intramolecular 2+2 Cycloadditions of Ketenes

Description: The objective of this study was to explore intramolecular ketene cycloadditions with the anticipated results of developing new synthetic methodology for the synthesis of polycyclic compounds difficult to obtain by other procedures. (o-Alkenylphenoxy)ketenes were initially selected for this study because these ketenes provided a favorable proximity for the intramolecular [2+2] cycloaddition reactions. The difunctional precursors, (o-alkenylphenoxy)- acetic acids, were readily prepared from o-alkenylphenols and ∝-halocarboxylic acids and were converted to the corresponding acid chlorides by reaction with oxalyl chloride. The acid chlorides were dehydrochlorinated to the corresponding (o-alkenylphenoxy)ketenes by treatment with triethylamine. The ketenes undergo a facile intramolecular [2+2] cycloaddition to give polycyclic eye 1obutanones. The (o-vinylphenoxy)ketenes are clearly more reactive than the (o-allylphenoxy)ketenes and provide much better yields of the cycloaddition products because of electronic effects in the transition state in the cycloaddition process. The intramolecular [2+2] cycloadditions of keteniminium salts were included in this study as a more electrophilic alternative to ketenes that will react with less nucleophilic carbon-carbon double bonds. However, the use of keteniminium salts instead of ketenes in Intramolecular cycloadditions does have some limitations. The synthesis of benzofurans via the intramolecular [2+2] cycloadditions of (o-acylphenoxy)ketenes was accomplished. The initially formed ß-lactone cycloaddition products spontaneously underwent decarboxylation to the benzofurans. The aromaticity of the benzofurans is apparently a very strong driving force for the cycloaddition. During the course of this study, two new synthetic methods were discovered which in many instances represent a significant Improvement over existing methods. The Wittig Reactions of ketoacids without protecting the carboxyl groups provide a reliable source of the precursor unsaturated acids needed for intramolecular ketene-olefin cycloadditions. Also, the one-pot preparation of intramolecular ketene cycloaddition products from the carboxylic acid via the tosylate represents a new synthetic method. This procedure eliminates the acid halide preparation, isolation and purification step, thereby significantly ...
Date: December 1986
Creator: Giang, Yun-Seng F. (Yun-Seng Frank)

Synthetic Applications of Ketene Cycloadditions: Natural and Novel Pyrethroid Insecticides

Description: A new synthetic route to natural and novel pyrethroid acids was developed utilizing ketene cycloaddition which is a significant improvement over existing syntheses. The newly synthesized pyrethroid acids were converted to pyrethroid esters and used to study structure-activity relationships. The cycloaddition of dichloroketene with 2,5-dimethyl-2,4-hexadiene yields (2+2) cycloaddition products, 2,2-dichlorocyclobutanones. The reductive removal of one chlorine atom from these cycloaddition products gave monochlorocyclobutanones which underwent a Favorskii-type ring contraction to yield cis- and trans-chrysanthemic acids. 4-Methyl-1,3-pentadiene was also used as a precursor in this synthetic scheme to yield an analogue of the chrysanthemic acid. These results are consistent with a concerted cycloaddition process involving a dipolar transition state. The zinc reduction is not a regiospecific reaction which accounts for the two regioisomers of the monochlorocyclobutanones. The Favorskii-type ring contraction is a regiospecific reaction. A variety of different bicyclo(3.1.0)alkenecarboxylates and bicyclo(4.1.0)heptenecarboxylates were synthesized from alkylcyclopentadiene and fulvene derivatives. These new bicyclo pyrethroid acids are structurally similar to the natural chrysanthemic acid but are rigid and locked in a single conformation which is likely the least stable conformer of the natural acid. The acids were converted to pyrethroid esters and tested against the housefly and cockroach. The test results indicate that the bicyclo pyrethroids synthesized are not as active as the natural pyrethroid. Apparently, these bicyclo pyrethroids with structures similar to the less stable conformer of the natural pyrethroids are of little consequence as it binds to the target site in the insect. In an effort to learn more about the conformational requirements of the pyrethroid acid, a new bicyclo-spiro pyrethroid system with a structure similar to the most stable conformation of the natural pyrethroid was designed and synthesized. These bicyclo-spiro pyrethroids were derived from a new isopropylidenecyclobutane derivatives as a starting compound instead of a conjugated diene. The test results of ...
Date: August 1985
Creator: Ko, Jinren

Pyrolysis Capillary Chromatography of Refuse-Derived Fuel and Aquatic Fulvic Acids

Description: Pyrolysis-capillary gas chromatography combined with FID, ECD and MS detection were used to characterize refuse-derived fuel and aquatic fulvic acids. Different pyrolysis methods and programs were evaluated. Pyrolysis temperatures of 700-800°C produced the strongest signal for organics present in RDF and fulvic acid. Cellulose and fatty acids pyrolyzates were identifiable by GC-MS following preparative pyrolysis fractionation. At organic chloride content of 0.023%, only three halogenated compounds were detected in the GC-MS of the fractions. None of the priority pollutants were detected at lower detection limit of 0.72 to 24 mg/ kg RDF. Selective solvent extraction improves the reproduciblities of the technique and allows the detection of polymeric structures. Pyrograms of polyvinyl chloride and regular typing paper showed some common peaks that are present in the RDF pyrogram. About 65% of the peaks in the RDF pyrogram might be of paper origin. The organic chloride content of the RDF was evaluated by ion chromatography of the trapped pyrolyzates in 2% NaOH trap and it was found to be 221 mg Cl/ kg dry RDF. Pyrolysis conditions and temperature programs for FA were systematically evaluated. Samples included purified FA, methylated FA and HPLC separated fractions. Characteristic pyrograms were developed. Profiles of benzene, toluene, phenol, m-cresol and biphenyl from FA were evaluated. The production of phenol was the largest at 800°C, at concentration of 1.61 mg per gram of FA pyrolyzed. The profiles of benzene and toluene followed the same pathways. Both pyrolyzates had at least two precursors. HPLC fractions of FA showed some regular retention patterns characteristic of polymeric material. DL-proline, seriene and vanillic acid pyrograms showed some peaks with the same retention times as those in FA pyrogram under the same conditions. A reproducibility of 6% relative standard deviation was achieved in the pyrolysis of RDF and 0.91% in the case ...
Date: December 1989
Creator: Haj-Mahmoud, Qasem M. (Qasem Mohammed)

Syntheses of Highly Strained Energetic Molecules and Development of New Synthetic Methodology

Description: The objective of this study was to synthesize new energetic, strained, saturated polycyclic compounds. For this purpose, new methodology has been developed, as follows: (i) Ketenes have been generated in situ via treatment of aldo-, keto- or alkenoic acid with either toluenesulfonyl chloride or 2-chloro-1-methylpyridfniurn iodide (Mulkaiyama's reagent). The reactive intermediates thereby generated have been found to undergo intramolecular [2+2] cycloaddition reactions in these systems.
Date: May 1987
Creator: Wu, An-hsiang

Kinetics Studies of Substituted Tungsten Carbonyl Complexes

Description: Thermal reactions and flash photolysis are used to study the olefin bond-migration promoted by tungsten carbonyls. Substitution of piperidine (pip) by 2- allylphenyldiphenylphosphine (adpp) in the cis-(pip)(η^1- adpp)W(CO)-4 complex was investigated, and no olefin bond-migration was observed. This suggests that a vacant coordinated site adjacent to the coordinated olefin is an essential requirement for olefin bond rearrangement. The rates of olefin attack on the photogenerated coordinatively unsaturated species, cis-[(CB)(η^1-ol- P)W(CO)-4] (CB = chlorobenzene, p-ol = Ph-2P(CH-2)-3CH=CH-2; n = 1-4) were measured. Kinetics data obtained both in pure CB and in CB/cyclohexane mixtures support a dissociative mechanism in which the W-CB bond is broken in the transition state. In contrast to results observed in studies of other related systems, no olefin bond-migration is noted. This observation is attributed to P-W coordination at all stages of the reaction, which precludes formation of a reactive intermediate containing a vacant coordination site adjacent to a P-ol bond.
Date: August 1989
Creator: Wang, I-Hsiung, 1950-

Raman and NMR Relaxation Studies of Molecular Dynamics in Liquids

Description: Raman vibrational bands are sensitive to fluctuations in the molecular environment. Variations in the bandwidth and peak position can then be utilized to monitor molecular forces and interactions present in condense phases. Nuclear Magnetic Resonance (NMR) provides a convenient probe for the study of molecular reorientation in liquids since nuclear spin relaxation times are dependent on the details of molecular motion. Presented here is the solvent study of the Raman bandwidths and frequency displacements of the mode of the compounds CH3MCI3 (M = C, Si, Ge, Sn) in a number of solvents of widely varying molecular structure. Also, a detailed isotope dilution study of the modes in CH2CI2/CD2CI2 mixtures is presented. In this set of experiments, I observed broadening of the v1 mode of CH2C12 upon dilution,which is the first experimental observation of such behavior. The temperature-dependent carbon-13 relaxation times and nuclear Overhauser enhancements in neat dichloromethane were measured. In this study we found that the molecular reorientation of this molecule was highly anisotropic, but could be well characterized assuming quasi-symmetric top behavior. In addition, in order to gain a more complete understanding of the reorientational dynamics in dichloromethane, we analyzed the 13-C NMR relaxation of CH2CI2 both in "inert" solvents of differing viscosities and in interactive solvents of varying Lewis basicities. Various theoretical models were also applied in order to characterize dichloromethane1s reorientational dynamics.
Date: August 1987
Creator: Rodriguez, Arturo A. (Arturo Angel)

Thermal and Flash Photolysis Studies of Ligand-Exchange Reactions of Substituted Metal Carbonyl Complexes of Cr and Mo

Description: Thermal and flash photolysis studies of ligand-substitution reactions of cis-(pip)(L)M(CO)_4 by L' (pip = piperidine; L, L' = CO, phosphines, phosphites; M = Cr, Mo) implicate square-pyramidal [(L)M(CO)_4], in which L occupies a coordination site in the equatorial plane, as the reactive species. In chlorobenzene (= CB) solvent, the predominant species formed after flash photolysis and a steady-state intermediate for the thermal reaction is cis—[(CB)(L)M(CO)_4], for which rates of CB-dissociation increase with increasing steric demands of coordinated L. Rates of CB-dissociation from trans-[(CB)(L)M(CO)_4] intermediates, formed after photolysis but not thermally, exhibit no observable dependence on the steric properties of the coordinated L.
Date: May 1989
Creator: Awad, Hani H. (Hani Hanna)

Reduction Pathways in Cyclopentadienyl Rhenium Dicarbonyl Dibromide Deriviatives and Indenyl Rhenium Tricarbonyl: Synthesis, Structure, and Reactivity of Anionic Cyclopentadienyl Rhenium Complexes. Ring Attack vs. Metal-Halogen Exchange

Description: The reactions of diagonal and lateral Cp'Re(CO)2Br2 (where Cp' = n5-C5H5, n5-C5Me5) and (n5-CgH7)Re(CO)3 with reducing agents have been examined. Hydride reduction at -78 °C is observed to occur at the Cp ring in both CpRe(CO)2Br2 isomers, affording a thermally unstable [(n4 -C5Hg)Re(CO)2Br2]- complex. The product of hydride ring attack has been characterized by low-temperature IR and 1H NMR measurements in addition to 13C NOE and heteronuclear 2D NMR measurements. Reaction of lateral CpRe(CO)2Br2 with either MeLi or PhLi affords both Cp-ring attack and metalhalogen exchange, [CpRe(CO)2Br]- (1) while t-BuLi reacts exclusively via metal-halogen exchange. diag-CpRe(CO)2Br2 reacts with the above lithium reagents to yield the same metal-halogen exchange anion. Analogous reactions using diag- and lat-Cp*Re(CO)2Br2 (where Cp* = n5-CgMe5) afford only the corresponding rhenium metal-halogen exchange anion, [Cp*Re(CO)2Br] (2). The molecular structures of 1-[Li/15-Crown-5] and 2-PPP were established by X-ray crystallography. 1-[Li/15-Crown-5] crystallizes in the monoclinic space group P21 with a = 10.860(4) A, b = 13.116(5) A, c = 7.417(3) A, B = 105.26(3)0, V = 1018.7(3) A3 , and Z = 2. 2-PPP crystallizes in the orthorhombic space group Pbca with a = 20.646(5) A, b = 17.690(5) A, c = 17.553(3) A, and z = 8. Solution FT-IR studies of 2 in THF reveal the presence of only solvent-separated ion pairs when the gegencation is Li+, K+, or PPP+ from -70 °C to room temperature. 2-Na at room temperature displays a 39:61 mixture of carbonyl oxygen-sodium and solvent-separated ion pairs, respectively. These ion pairs reveals a reversible temperature-dependent equilibrium. The equilibrium constant has been determined by IR band shape analysis over the temperature range -70 °C to room temperature and values of AH and AS are reported. The reaction of the ring-attacked complex, diag-[(n4-C5H6)Re(CO)2Br2]- with PPh3, P(OPh)3, or Me3CNC leads to the formation of the CpRe(CO)2L. Treatment ...
Date: December 1989
Creator: Lee, Sang Woo, 1952-

Studies of Nitrogen-containing Compounds Having Pyrethroid-like Bioactivity

Description: During recent years most of the successful developments in pyrethroids have been primarily concerned with structural or compositional variations. As a part of our continuing interest in pyrethroid insecticides, nitrogen-containing compounds having pyrethroid-like structures were synthesized. Seven prolinate compounds, N-(substituted)-phenyl-prolinates and N-carbobenzoxy-prolinates were coupled with known pyrethroid alcohols. These structural variations which "locked in" a specific conformation between the nitrogen and chiral a-carbon in the acid moiety of fluvalinate were studied to determine the influence of certain conformations on insecticidal toxicity. The toxicity data for the prolinate compounds showed intermediate mortality against nonresistant cockroaches. It was concluded that the conformation imposed by the proline ring portion of the esters was probably close to the favored conformation for interaction of fluvalinate-like pyrethroids with the insect receptor site. A second series of nitrogen-containing compounds, twenty-five carbamate esters resulting from the condensation of N-isopropyl-(substituted)-anilines and N-alkyl-(substituted)-benzylamines with appropriate pyrethroid alcohols were studied for insecticidal activity. These studies were conducted on pyrethroid-susceptible houseflies. Some of the carbamate esters exhibited high toxicity when synergized by piperonyl butoxide. For example, the toxicity ( LD 50 ) of O-a-cyano-3-phenoxyfaenzyl-N-a,a-dimethyl-4-bromo-benzyl carbamate was 0.012 ug/g, which is significantly greater than that reported for the potent pyrethroid, fenvalerate. Correlations of insecticidal activity with respect to structure and conformational factors of the carbamate esters have been made. The N-isopropyl substituent decreases insecticidal activity in the N-benzyl-derived compounds, while the N-isopropyl substituent enhances activity in the N-phenyl-derived compounds. Certain substituents on the phenyl ring of both analogs greatly affect insecticidal potency of the carbamate esters. Also, some alkyl substituents (especially, a,cx-dimethyl and a-cyclopropyl groups) on the benzylic carbon of the benzylamine series enhance toxicity. The a,a-dimethyl branching of the N-benzyl carbamate approximates the steric shape given by the gemdimethyl group for conventional cyclopropane ring-containing pyrethroids. The N-benzyl compounds are significantly synergized by ...
Date: August 1989
Creator: Lee, Jimmy Jing-Ming, 1955-

Intramolecular [2+2] Cycloadditions of Phenoxyketenes and Intermolecular [2+2] Cycloadditions of Aminoketenes

Description: One objective of this study was to explore the intramolecular [2+2] cycloadditions of phenoxyketenes to carbonyl groups with isoflavones and benzofurans as target compounds. The other objective was to investigate the eyeloaddition reactions of rarely studied aminoketenes. The conversion of 2-(carboxyalkoxy)benzils to the corresponding phenoxyketenes leads to an intramolecular [2+2] cycloaddition to ultimately yield isoflavones and/or 3-aroylbenzofurans. The product distributions are dependent upon the substitution pattern in the original benzil acids. The initial cycloaddition products, β-lactones, are isolated in some instances while some β-lactones spontaneously underwent decarboxylation and could not be isolated. The ketene intermediate was demonstrated in the intramolecular reaction of benzil acids or ketoacids with sodium acetate and acetic anhydride. It is suggested that sodium acetate and acetic anhydride could serve as a source for the generation of ketenes directly from certain organic acids. The treatment of ketoacids with acetic anhydride and sodium acetate provides a simpler procedure to prepare benzofurans than going through the acid chloride with subsequent triethylamine dehydrochlorination to give the ketenes. N-Ary1-N-alkylaminoketenes were prepared for the first time from the corresponding glycine derivatives by using p-toluenesulfonyl chloride and triethylamine. These aminoketenes underwent in situ cycloadditions with cyclopentadiene, cycloheptene and cyclooctenes to yield only the endo -bicyclobutanones. The cycloheptene and cyclooctene cycloaddition products underwent dehydrogenation under the reaction conditions to yield bicycloenamines. A mechanism is proposed for this dehydrogenation involving a radical cation of the arylalkylamine. (N-Phenyl-N-methyl) aminomethylketene was also prepared and found to undergo an intramolecular Friedel-Crafts type acylation to yield an indole derivative when prepared by the acetic anhydride, sodium acetate method. The in situ cycloaddition of N-aryl-N-alkyl aminoketenes with various imines was found to form predominately cis-3-amino-2-azetidinones. A mechanism involving a dipolar intermediate is provided whereby the structure of the intermediate is determined by both electronic and steric effects. The stereochemistry of ...
Date: May 1989
Creator: Gu, Yi Qi