UNT Libraries - 111 Matching Results

Search Results

Results in Algebraic Determinedness and an Extension of the Baire Property

Description: In this work, we concern ourselves with particular topics in Polish space theory. We first consider the space A(U) of complex-analytic functions on an open set U endowed with the usual topology of uniform convergence on compact subsets. With the operations of point-wise addition and point-wise multiplication, A(U) is a Polish ring. Inspired by L. Bers' algebraic characterization of the relation of conformality, we show that the topology on A(U) is the only Polish topology for which A(U) is a Polish ring for a large class of U. This class of U includes simply connected regions, simply connected regions excluding a relatively discrete set of points, and other domains of usual interest. One thing that we deduce from this is that, even though C has many different Polish field topologies, as long as it sits inside another Polish ring with enough complex-analytic functions, it must have its usual topology. In a different direction, we show that the bounded complex-analytic functions on the unit disk admits no Polish topology for which it is a Polish ring. We also study the Lie ring structure on A(U) which turns out to be a Polish Lie ring with the usual topology. In this case, we restrict our attention to those domains U that are connected. We extend a result of I. Amemiya to see that the Lie ring structure is determined by the conformal structure of U. In a similar vein to our ring considerations, we see that, again for certain domains U of usual interest, the Lie ring A(U) has a unique Polish topology for which it is a Polish Lie ring. Again, the Lie ring A(U) imposes topological restrictions on C. That is, C must have its usual topology when sitting inside any Polish Lie ring isomorphic to A(U). In the last ...
Date: May 2017
Creator: Caruvana, Christopher

Partition Properties for Non-Ordinal Sets under the Axiom of Determinacy

Description: In this paper we explore coloring theorems for the reals, its quotients, cardinals, and their combinations. This work is done under the scope of the axiom of determinacy. We also explore generalizations of Mycielski's theorem and show how these can be used to establish coloring theorems. To finish, we discuss the strange realm of long unions.
Date: May 2017
Creator: Holshouser, Jared Kenneth

A Decomposition of the Group Algebra of a Hyperoctahedral Group

Description: The descent algebra of a Coxeter group is a subalgebra of the group algebra with interesting representation theoretic properties. For instance, the natural map from the descent algebra of the symmetric group to the character ring is a surjective algebra homomorphism, so the descent algebra implicitly encodes information about the representations of the symmetric group. However, this property does not hold for other Coxeter groups. Moreover, a complete set of primitive idempotents in the descent algebra of the symmetric group leads to a decomposition of the group algebra as a direct sum of induced linear characters of centralizers of conjugacy class representatives. In this dissertation, I consider the hyperoctahedral group. When the descent algebra of a hyperoctahedral group is replaced with a generalization called the Mantaci-Reutenauer algebra, the natural map to the character ring is surjective. In 2008, Bonnafé asked whether a complete set of idempotents in the Mantaci-Reutenauer algebra could lead to a decomposition of the group algebra of the hyperoctahedral group as a direct sum of induced linear characters of centralizers. In this dissertation, I will answer this question positively and go through the construction of the idempotents, conjugacy class representatives, and linear characters required to do so.
Date: December 2016
Creator: Tomlin, Drew E

Contributions to Descriptive Set Theory

Description: Assume AD+V=L(R). In the first chapter, let W^1_1 denote the club measure on \omega_1. We analyze the embedding j_{W^1_1}\restr HOD from the point of view of inner model theory. We use our analysis to answer a question of Jackson-Ketchersid about codes for ordinals less than \omega_\omega. In the second chapter, we provide an indiscernibles analysis for models of the form L[T_n,x]. We use our analysis to provide new proofs of the strong partition property on \delta^1_{2n+1}
Date: December 2016
Creator: Dance, Cody

Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms

Description: In this thesis, we define differential operators for Hermitian Jacobi forms and Hermitian modular forms over the Gaussian number field Q(i). In particular, we construct Rankin-Cohen brackets for such spaces of Hermitian Jacobi forms and Hermitian modular forms. As an application, we extend Rankin's method to the case of Hermitian Jacobi forms. Finally we compute Fourier series coefficients of Hermitian modular forms, which allow us to give an example of the first Rankin-Cohen bracket of two Hermitian modular forms. In the appendix, we provide tables of Fourier series coefficients of Hermitian modular forms and also the computer source code that we used to compute such Fourier coefficients.
Date: December 2016
Creator: Martin, James D

Quantum Drinfeld Hecke Algebras

Description: Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras in arbitrary dimension for the infinite family of mystic reflection groups of Kirkman, Kuzmanovich, and Zhang, who showed they satisfy a Shephard-Todd-Chevalley theorem in the quantum setting. Using a classification of automorphisms of quantum polynomial rings in low dimension, we develop tools for studying quantum Drinfeld Hecke algebras in 3 dimensions. We describe the parameter space of such algebras using special properties of the quantum determinant in low dimension; although the quantum determinant is not a homomorphism in general, it is a homomorphism on the finite linear groups acting in dimension 3.
Date: August 2016
Creator: Uhl, Christine

Irreducible Modules for Yokonuma-Type Hecke Algebras

Description: Yokonuma-type Hecke algebras are a class of Hecke algebras built from a Type A construction. In this thesis, I construct the irreducible representations for a class of generic Yokonuma-type Hecke algebras which specialize to group algebras of the complex reflection groups and to endomorphism rings of certain permutation characters of finite general linear groups.
Date: August 2016
Creator: Dave, Ojas

Continuous Combinatorics of a Lattice Graph in the Cantor Space

Description: We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.
Date: May 2016
Creator: Krohne, Edward William

The Relative Complexity of Various Classification Problems among Compact Metric Spaces

Description: In this thesis, we discuss three main projects which are related to Polish groups and their actions on standard Borel spaces. In the first part, we show that the complexity of the classification problem of continua is Borel bireducible to a universal orbit equivalence relation induce by a Polish group on a standard Borel space. In the second part, we compare the relative complexity of various types of classification problems concerning subspaces of [0,1]^n for all natural number n. In the last chapter, we give a topological characterization theorem for the class of locally compact two-sided invariant non-Archimedean Polish groups. Using this theorem, we show the non-existence of a universal group and the existence of a surjectively universal group in the class.
Date: May 2016
Creator: Chang, Cheng

Optimal Strategies for Stopping Near the Top of a Sequence

Description: In Chapter 1 the classical secretary problem is introduced. Chapters 2 and 3 are variations of this problem. Chapter 2, discusses the problem of maximizing the probability of stopping with one of the two highest values in a Bernoulli random walk with arbitrary parameter p and finite time horizon n. The optimal strategy (continue or stop) depends on a sequence of threshold values (critical probabilities) which has an oscillating pattern. Several properties of this sequence have been proved by Dr. Allaart. Further properties have been recently proved. In Chapter 3, a gambler will observe a finite sequence of continuous random variables. After he observes a value he must decide to stop or continue taking observations. He can play two different games A) Win at the maximum or B) Win within a proportion of the maximum. In the first section the sequence to be observed is independent. It is shown that for each n>1, theoptimal win probability in game A is bounded below by (1-1/n)^{n-1}. It is accomplished by reducing the problem to that of choosing the maximum of a special sequence of two-valued random variables and applying the sum-the-odds theorem of Bruss (2000). Secondly, it is assumed the sequence is i.i.d. The best lower bounds are provided for the winning probabilities in game B given any continuous distribution. These bounds are the optimal win probabilities of a game A which was examined by Gilbert and Mosteller (1966).
Date: December 2015
Creator: Islas Anguiano, Jose Angel

Contributions to Descriptive Set Theory

Description: In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of mice with Woodin cardinals, a counterpart to Steel’s result that the L[T2n+1] are extender models, and finally show that the generalized contiuum hypothesis holds in these models, solving a conjecture of Woodin.
Date: August 2015
Creator: Atmai, Rachid

Restricting Invariants and Arrangements of Finite Complex Reflection Groups

Description: Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.
Date: August 2015
Creator: Berardinelli, Angela

Trees and Ordinal Indices in C(K) Spaces for K Countable Compact

Description: In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.
Date: August 2015
Creator: Dahal, Koshal Raj

Reduced Ideals and Periodic Sequences in Pure Cubic Fields

Description: The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.
Date: August 2015
Creator: Jacobs, G. Tony

Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

Description: A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains of interest are rectangular mixed domains. A new type of conditions is introduced. Ladder conditions take the uncommon approach of specifying information on the interior of a mixed domain. Specifically, function values are specified on the parabolic portion of a mixed domain. The remaining conditions are specified on the boundary. A conjecture is posed and states that ladder conditions are necessary and sufficient for existence and uniqueness of a solution to the Tricomi equation. Numerical experiments, produced by application of the descent method, provide strong evidence in support of the conjecture. Ladder conditions allow for a continuous deformation from Dirichlet ...
Date: August 2014
Creator: Montgomery, Jason W.

Hermitian Jacobi Forms and Congruences

Description: In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms.
Date: August 2014
Creator: Senadheera, Jayantha

Generalized C-sets

Description: The problem undertaken in this paper is to determine what the algebraic structure of the class of C-sets is, when the notion of sum is to be the "set sum. " While the preliminary work done by Appling took place in the space of additive and bounded real valued functions, the results here are found in the more general setting of a complete lattice ordered group. As a conseque n c e , G . Birkhof f' s book, Lattice Theory, is used as the standard reference for most of the terminology used in the paper. The direction taken is prompted by a paper by W. D. L. Appling, "A Generalization of Absolute Continuity and of an Analogue of the Lebesgue Decomposition Theorem. " Since some of the results obtained provide another approach to a problem originally studied by Nakano, and improved upon by Bernau, reference is made to their work to provide other terminology and examples of alternative approaches to the problem of lateral completion. Thus Chapter I contains a brief history of the notion of C-sets and their relationship to lattice ordered groups, along with a summary of the properties of lattice ordered groups needed for later developments. In addition, several results in the general theory of lattice ordered groups are cited to provide insight into the comparability of the assumptions that will ultimately be made about the groups. Chapter II begins with the axiomatization of the collection of nearest point functions" for the closed A-ideals of the cone of a complete lattice ordered group. The basic results in the chapter establish that the functions defined do indeed characterize the complete A-ideals, and that the maps have a 'nearest point property." The maps are then extended to the entire group and shown to correspond to the "nearest point ...
Date: August 1974
Creator: Keisler, D. Michael

Fundamental Issues in Support Vector Machines

Description: This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its final section presents an algorithm by Dr. Kallman (preprint), based on earlier Russian work by B.F. Mitchell, V.F Demyanov, and V.N. Malozemov, and proves its convergence. The section also discusses briefly architectural features of the algorithm expected to result in practical speed increases.
Date: May 2014
Creator: McWhorter, Samuel P.

Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models

Description: We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators
Date: December 2013
Creator: Weng, Yu

Polynomial Isomorphisms of Cayley Objects Over a Finite Field

Description: In this dissertation the Bays-Lambossy theorem is generalized to GF(pn). The Bays-Lambossy theorem states that if two Cayley objects each based on GF(p) are isomorphic then they are isomorphic by a multiplier map. We use this characterization to show that under certain conditions two isomorphic Cayley objects over GF(pn) must be isomorphic by a function on GF(pn) of a particular type.
Date: December 1989
Creator: Park, Hong Goo

Invertible Ideals and the Strong Two-Generator Property in Some Polynomial Subrings

Description: Let K be any field and Q be the rationals. Define K^1[X] = {f(X) e K[X]| the coefficient of X in f(X) is zero} and Q^1β[X] = {f(X) e Q[X]| the coefficent of β1(X) in the binomial expansion of f(X) is zero}, where {β1(X)}^∞ i=0 are the well-known binomial polynomials. In this work, I establish the following results: K^1[X] and Q^1β[X] are one-dimensional, Noetherian, non-Prüfer domains with the two-generator property on ideals. Using the unique factorization structure of the overrings K[X] and Q[X], the nonprincipal ideal structures of both rings are characterized, and from this characterization, necessary and sufficient conditions are found for a nonprincipal ideal to be invertible. The nonprincipal invertible ideals are then characterized in terms of the coefficients of the generators, and an explicit formula for the inverse of any proper invertible ideal is found. Finally, the class groups of both rings are shown to be torsion free abelian groups. Let n be any nonnegative integer. Results similar to the above are found in the generalizations of these two rings, K^n[X] and q^nβ[X], where the coefficients on the first n nonconstant basis elements are zero. For the domains K^1[X] and Q^1β[X], the property of strong two-generation is explored in detail and the following results are established: 1. K^1[X] and Q^1β[X] are not strongly two-generated, 2. In either ring, any polynomial with a constant term, or of degree two or three is a strong two-generator. 3. In K^1[X] any polynomial divisible by X^4 is not a strong two-generator, 4. An ideal I in K^1[X] or Q^1β[X] is strongly two-generated if and only if it is invertible.
Date: May 1987
Creator: Chapman, Scott T. (Scott Thomas)

Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors

Description: This dissertation focuses on the significance of containment relations between the above mentioned classes of ideals. The main problem considered in Chapter II is determining conditions which lead a ring to be a P-ring, D-ring, or AM-ring when every regular ideal is a P-ideal, D-ideal, or AM-ideal, respectively. We also consider containment relations between classes of regular ideals which guarantee that the ring is a quasi-valuation ring. We continue this study into the third chapter; in particular, we look at the conditions in a quasi-valuation ring which lead to a = Jr, sr - f, and a = v. Furthermore we give necessary and sufficient conditions that a ring be a discrete rank one quasi-valuation ring. For example, if R is Noetherian, then ft = J if and only if R is a discrete rank one quasi-valuation ring.
Date: May 1987
Creator: Race, Denise T. (Denise Tatsch)

Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

Description: The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), i.e., the weak density of a homogeneous complete Boolean algebra B is at least as big as the cellularity. Also in this chapter, we introduce discernible sets. We prove that a discernible set of cardinality no greater than c(B) cannot be weakly dense. In chapter VI, we prove the main result of this dissertation, i.e., d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}). In chapter VII, we list some unsolved problems concerning this dissertation.
Date: August 1990
Creator: Bozeman, Alan Kyle