UNT Libraries - Browse


A Decomposition of the Group Algebra of a Hyperoctahedral Group

Description: The descent algebra of a Coxeter group is a subalgebra of the group algebra with interesting representation theoretic properties. For instance, the natural map from the descent algebra of the symmetric group to the character ring is a surjective algebra homomorphism, so the descent algebra implicitly encodes information about the representations of the symmetric group. However, this property does not hold for other Coxeter groups. Moreover, a complete set of primitive idempotents in the descent algebra of the symmetric group leads to a decomposition of the group algebra as a direct sum of induced linear characters of centralizers of conjugacy class representatives. In this dissertation, I consider the hyperoctahedral group. When the descent algebra of a hyperoctahedral group is replaced with a generalization called the Mantaci-Reutenauer algebra, the natural map to the character ring is surjective. In 2008, Bonnafé asked whether a complete set of idempotents in the Mantaci-Reutenauer algebra could lead to a decomposition of the group algebra of the hyperoctahedral group as a direct sum of induced linear characters of centralizers. In this dissertation, I will answer this question positively and go through the construction of the idempotents, conjugacy class representatives, and linear characters required to do so.
Date: December 2016
Creator: Tomlin, Drew E

Contributions to Descriptive Set Theory

Description: Assume AD+V=L(R). In the first chapter, let W^1_1 denote the club measure on \omega_1. We analyze the embedding j_{W^1_1}\restr HOD from the point of view of inner model theory. We use our analysis to answer a question of Jackson-Ketchersid about codes for ordinals less than \omega_\omega. In the second chapter, we provide an indiscernibles analysis for models of the form L[T_n,x]. We use our analysis to provide new proofs of the strong partition property on \delta^1_{2n+1}
Date: December 2016
Creator: Dance, Cody

Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms

Description: In this thesis, we define differential operators for Hermitian Jacobi forms and Hermitian modular forms over the Gaussian number field Q(i). In particular, we construct Rankin-Cohen brackets for such spaces of Hermitian Jacobi forms and Hermitian modular forms. As an application, we extend Rankin's method to the case of Hermitian Jacobi forms. Finally we compute Fourier series coefficients of Hermitian modular forms, which allow us to give an example of the first Rankin-Cohen bracket of two Hermitian modular forms. In the appendix, we provide tables of Fourier series coefficients of Hermitian modular forms and also the computer source code that we used to compute such Fourier coefficients.
Date: December 2016
Creator: Martin, James D

Quantum Drinfeld Hecke Algebras

Description: Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras in arbitrary dimension for the infinite family of mystic reflection groups of Kirkman, Kuzmanovich, and Zhang, who showed they satisfy a Shephard-Todd-Chevalley theorem in the quantum setting. Using a classification of automorphisms of quantum polynomial rings in low dimension, we develop tools for studying quantum Drinfeld Hecke algebras in 3 dimensions. We describe the parameter space of such algebras using special properties of the quantum determinant in low dimension; although the quantum determinant is not a homomorphism in general, it is a homomorphism on the finite linear groups acting in dimension 3.
Date: August 2016
Creator: Uhl, Christine

Irreducible Modules for Yokonuma-Type Hecke Algebras

Description: Yokonuma-type Hecke algebras are a class of Hecke algebras built from a Type A construction. In this thesis, I construct the irreducible representations for a class of generic Yokonuma-type Hecke algebras which specialize to group algebras of the complex reflection groups and to endomorphism rings of certain permutation characters of finite general linear groups.
Date: August 2016
Creator: Dave, Ojas

Continuous Combinatorics of a Lattice Graph in the Cantor Space

Description: We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.
Date: May 2016
Creator: Krohne, Edward William

The Relative Complexity of Various Classification Problems among Compact Metric Spaces

Description: In this thesis, we discuss three main projects which are related to Polish groups and their actions on standard Borel spaces. In the first part, we show that the complexity of the classification problem of continua is Borel bireducible to a universal orbit equivalence relation induce by a Polish group on a standard Borel space. In the second part, we compare the relative complexity of various types of classification problems concerning subspaces of [0,1]^n for all natural number n. In the last chapter, we give a topological characterization theorem for the class of locally compact two-sided invariant non-Archimedean Polish groups. Using this theorem, we show the non-existence of a universal group and the existence of a surjectively universal group in the class.
Date: May 2016
Creator: Chang, Cheng

Contributions to Descriptive Set Theory

Description: In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of mice with Woodin cardinals, a counterpart to Steel’s result that the L[T2n+1] are extender models, and finally show that the generalized contiuum hypothesis holds in these models, solving a conjecture of Woodin.
Date: August 2015
Creator: Atmai, Rachid

Reduced Ideals and Periodic Sequences in Pure Cubic Fields

Description: The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.
Date: August 2015
Creator: Jacobs, G. Tony

Trees and Ordinal Indices in C(k) Spaces for K Countable Compact

Description: In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.
Date: August 2015
Creator: Dahal, Koshal Raj

Restricting Invariants and Arrangements of Finite Complex Reflection Groups

Description: Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.
Date: August 2015
Creator: Berardinelli, Angela

Hermitian Jacobi Forms and Congruences

Description: In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms.
Date: August 2014
Creator: Senadheera, Jayantha

Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

Description: A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains of interest are rectangular mixed domains. A new type of conditions is introduced. Ladder conditions take the uncommon approach of specifying information on the interior of a mixed domain. Specifically, function values are specified on the parabolic portion of a mixed domain. The remaining conditions are specified on the boundary. A conjecture is posed and states that ladder conditions are necessary and sufficient for existence and uniqueness of a solution to the Tricomi equation. Numerical experiments, produced by application of the descent method, provide strong evidence in support of the conjecture. Ladder conditions allow for a continuous deformation from Dirichlet ...
Date: August 2014
Creator: Montgomery, Jason W.

Generalized C-sets

Description: The problem undertaken in this paper is to determine what the algebraic structure of the class of C-sets is, when the notion of sum is to be the "set sum. " While the preliminary work done by Appling took place in the space of additive and bounded real valued functions, the results here are found in the more general setting of a complete lattice ordered group. As a conseque n c e , G . Birkhof f' s book, Lattice Theory, is used as the standard reference for most of the terminology used in the paper. The direction taken is prompted by a paper by W. D. L. Appling, "A Generalization of Absolute Continuity and of an Analogue of the Lebesgue Decomposition Theorem. " Since some of the results obtained provide another approach to a problem originally studied by Nakano, and improved upon by Bernau, reference is made to their work to provide other terminology and examples of alternative approaches to the problem of lateral completion. Thus Chapter I contains a brief history of the notion of C-sets and their relationship to lattice ordered groups, along with a summary of the properties of lattice ordered groups needed for later developments. In addition, several results in the general theory of lattice ordered groups are cited to provide insight into the comparability of the assumptions that will ultimately be made about the groups. Chapter II begins with the axiomatization of the collection of nearest point functions" for the closed A-ideals of the cone of a complete lattice ordered group. The basic results in the chapter establish that the functions defined do indeed characterize the complete A-ideals, and that the maps have a 'nearest point property." The maps are then extended to the entire group and shown to correspond to the "nearest point ...
Date: August 1974
Creator: Keisler, D. Michael

Fundamental Issues in Support Vector Machines

Description: This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its final section presents an algorithm by Dr. Kallman (preprint), based on earlier Russian work by B.F. Mitchell, V.F Demyanov, and V.N. Malozemov, and proves its convergence. The section also discusses briefly architectural features of the algorithm expected to result in practical speed increases.
Date: May 2014
Creator: McWhorter, Samuel P.

Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models

Description: We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators
Date: December 2013
Creator: Weng, Yu

Polynomial Isomorphisms of Cayley Objects Over a Finite Field

Description: In this dissertation the Bays-Lambossy theorem is generalized to GF(pn). The Bays-Lambossy theorem states that if two Cayley objects each based on GF(p) are isomorphic then they are isomorphic by a multiplier map. We use this characterization to show that under certain conditions two isomorphic Cayley objects over GF(pn) must be isomorphic by a function on GF(pn) of a particular type.
Date: December 1989
Creator: Park, Hong Goo

Hausdorff, Packing and Capacity Dimensions

Description: In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given.
Date: August 1989
Creator: Spear, Donald W.

The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors

Description: We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
Date: August 1989
Creator: Hipp, James W. (James William), 1956-

Applications of Graph Theory and Topology to Combinatorial Designs

Description: This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism.
Date: December 1988
Creator: Somporn Sutinuntopas

Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension

Description: This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the itinerary of λ(P) under the map is λ(P)f_e is H_ϖ(P). In Chapter four it is shown that only period doubling or period halving bifurcations can occur for the family λf_e, λΣ[0,1]. Results concerning how the size of a stable orbit changes as bifurcations of the family λf_e occur are given. Let λΣ[0,1] be such that 1/2 is a periodic point of λf_e. In this case 1/2 is superstable. Chapter five investigates the boundary of the basin of attraction of this stable orbit. An algorithm is given that yields a graph directed construction such that the object constructed is the basin ...
Date: May 1988
Creator: Brucks, Karen M. (Karen Marie), 1957-

Operators on Continuous Function Spaces and Weak Precompactness

Description: If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly bounded is given. In chapter IV, weakly precompact subsets of L1(μ,X) are examined. For a Banach space X whose dual has the Radon-Nikodym property, it is shown that the weakly precompact subsets of L1(μ,X) are exactly the uniformly integrable subsets of L1(μ,X). Furthermore, it is shown that this characterization does not hold in Banach spaces X for which X* does not have the weak Radon-Nikodym property.
Date: August 1988
Creator: Abbott, Catherine Ann