UNT Libraries - 150 Matching Results

Search Results

Molecular Dynamics Simulations of the Structure and Properties of Boron Containing Oxide Glasses: Empirical Potential Development and Applications

Description: Potential parameters that can handle multi-component oxide glass systems especially boron oxide are very limited in literature. One of the main goals of my dissertation is to develop empirical potentials to simulate multi-component oxide glass systems with boron oxide. Two approaches, both by introducing the composition dependent parameter feature, were taken and both led to successful potentials for boron containing glass systems after extensive testing and fitting. Both potential sets can produce reasonable glass structures of the multi-component oxide glass systems, with structure and properties in good agreement with experimental data. Furthermore, we have tested the simulation settings such as system size and cooling rate effects on the results of structures and properties of MD simulated borosilicate glasses. It was found that increase four-coordinated boron with decreasing cooling rate and system size above 1000 atoms is necessary to produce converged structure. Another application of the potentials is to simulate a six-component nuclear waste glass, international simple glass (ISG), which was for first time simulated using the newly developed parameters. Structural features obtained from simulations agree well with the experimental results. In addition, two series of sodium borosilicate and boroaluminosilicate glasses were simulated with the two sets of potentials to compare and evaluate their applicability and deficiency. Various analyses on the structures and properties such as pair distribution function, total correlation function, coordination number analysis, Qn distribution function, ring size distribution function, vibrational density of states and mechanical properties were performed. This work highlights the challenge of MD simulations of boron containing glasses and the capability of the new potential parameters that enable simulations of wide range of mixed former glasses to investigate new structure features and design of new glass compositions for various applications.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Deng, Lu

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Description: Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during high strain rate deformation is still unclear. Many of the existing high strain rate models assume that the latent heat generated during deformation contributes to the change in the stress-strain behavior during dynamic loading, which is insufficient to explain the large stress observed during phase transformation under high strain rate deformation. Meanwhile, the relationship between the phase front velocity and strain rate has been studied. In this dissertation, a new resistance to phase transformation during high strain rate deformation is discussed and the relationship between the driving force for phase transformation and phase front velocity is established. With consideration of the newly defined resistance to phase transformation, a new model for phase transformation of SMAs during high strain rate deformation is presented and validated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this dissertation presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and ...
Date: December 2017
Creator: Yu, Hao

Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene

Description: This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. The PP film formulations were divided into 15 categories based on the type of HALS and nano-ZnO incorporated. This was done to derive meaningful comparison of the various film formulations. Following exposure under UV light, the lifetimes of certain formulations were determined. On the basis of the mechanical and friction properties, it was determined that generally, the HALS or nano-ZnO stabilized PP film give better properties and if those two kinds of UV stabilizers can work together.
Date: December 2017
Creator: Lu, Xinyao

Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices

Description: My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Patel, Mumukshu D

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

Description: In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin probe microscope was used to map elecropositivity difference between the phases and linked to wear/corrosion behavior. Phases with higher elecropositivity were more susceptible to surface degradation. Wear and corrosion synergy in marine environment was evaluated for two high entropy alloys (HEAs), CoCrFeMnNi and Al0.1CoCrFeNi. Between the two alloys, Al0.1CoCrFeNi showed better wear resistance compared to CoCrFeMnNi in dry and marine conditions due to quicker passivation, a higher magnitude of polarization resistance and significantly larger pitting resistance.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Ayyagari, Venkata A

P-type Doping of Pulsed Laser Deposited WS2 with Nb

Description: Layered transition metal dichalcogenides (TMDs) are potentially ideal semiconducting materials due to their in-plane carrier transport and tunable bandgaps, which are favorable properties for electrical and optoelectronic applications. However, the ability to make p-n junctions is the foundation of semiconductor devices, and therefore the ability to achieve reproducible p- and n-type doping in TMD semiconducting materials is critical. In this work, p-type substitutional doping of pulsed laser deposited WS2 films with niobium is reported. The synthesis technique of the PLD target with dopant incorporation which also ensures host material stoichiometry is presented. Hall electrical measurements confirmed stable p-type conductivity of the grown films. Structural characterization revealed that there was no segregation phase of niobium in the fabricated films and x-ray phtoelectron spectroscopy (xps) characterization suggest that the p-type doping is due to Nb4+ which results in p-type behavior. Stable hole concentrations as high as 10E21(cm-3) were achieved. The target fabrication and thin film deposition technique reported here can be used for substitutional doping of other 2D materials to obtain stable doping for device applications.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Egede, Eforma Justin

Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass

Description: Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investigations from our research group related to laser assisted crystallization of Fe-Si-B metallic glass (an excellent soft magnetic material by itself) showed a further improvement in soft magnetic performance. However, a fundamental understanding of crystallization and mechanical performance of laser treated metallic glass was essential from application point of view. In light of this, the current work employed an integrated experimental and computational approach to understand crystallization and its effects on tensile behavior of laser treated Fe-Si-B metallic glass. The time temperature cycles during laser treatments were predicted using a finite element thermal model. Structural changes in laser treated Fe-Si-B metallic glass including crystallization and phase evolution were investigated with the aid of X-ray diffraction, differential scanning calorimetry, resistivity measurements, and transmission electron microscopy. The mechanical behavior was evaluated by uniaxial tensile tests with an InstronTM universal testing machine. Fracture surfaces of the metallic glass were observed using scanning electron microscopy and site specific transmission electron microscopy. Fe-Si-B metallic glass samples treated with lower laser fluence (<0.49 J/mm2) underwent structural relaxation while higher laser flounces led to partial crystallization. The crystallization temperature experienced an upward shift due to rapid heating rates of the order of 104 K/s during laser treatments. The heating cycle was followed by termination of laser upon treatment attainment of peak temperature and rapid cooling of the similar order. Such dynamic effects resulted in premature arrest of the crystallite growth leading ...
Date: December 2017
Creator: Joshi, Sameehan Shrikant

Laser Additive Manufacturing of Magnetic Materials

Description: A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. This shift in phase stability subsequently affected the magnetic properties, specifically saturation magnetization. Ni-Fe-Mo and Ni-Fe-V permalloys were deposited from an elemental blend of powders as well. Both systems exhibited featureless microstructures dominated by an fcc phase. Magnetic measurements yielded saturation magnetizations on par with conventionally processed permalloys, however coercivities were significantly larger; this difference is attributed to microstructural defects that occur during the additive manufacturing process.
Date: August 2017
Creator: Mikler, Calvin

Developing Precipitation Hardenable High Entropy Alloys

Description: High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (γ′) and B2 precipitates in ...
Date: August 2017
Creator: Gwalani, Bharat

Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys

Description: Over the last few decades, body-centered-cubic (bcc) beta (β) titanium alloys have largely been exploited as structural alloys owing to the richness in their microstructural features. These features, which lead to a unique combination of high specific strength and ductility, excellent hardenability, good fatigue performance, and corrosion resistance, make these alloys viable candidates for many applications, including aerospace, automobile, and orthopedic implants. The mechanical properties of these alloys strongly depend on the various phases present; which can be controlled by thermomechanical treatments and/or alloy design. The two most important and studied phases are the metastable ω phase and the stable α phase. The present study focuses on the microstructural evolution and the mechanical behavior of these two phases in a model β-Ti alloy, binary Ti-12wt. %Mo alloy, and a commercial β-Ti alloy, β-21S. Microstructures containing athermal and isothermal ω phases in the binary Ti-12wt. %Mo alloy are obtained under specific accurate temperature controlled heat treatments. The formation and the evolution of the ω-phase based microstructures are investigated in detail via various characterization techniques such as SEM, TEM, and 3D atom probe tomography. The mechanical behavior was investigated via quasi-static tensile loading; at room and elevated temperatures. The effect of β phase stability on the deformation behavior is then discussed. Similar to the Ti-12wt. %Mo, the formation and the evolution of the athermal and isothermal ω phases in the commercial β-21S alloy was studied under controlled heat treatments. The structural and compositional changes were tracked using SEM, TEM, HR-STEM, and 3D atom probe tomography (3D-APT). The presence of additional elements in the commercial alloy were noted to make a considerable difference in the evolution and morphology of the ω phase and also the mechanical behavior of the alloys. The Portevin-Le Chatelier (PLC) like effect was observed in iii this alloy at ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Mantri, Srinivas Aditya

Additive Manufacturing of Metastable Beta Titanium Alloys

Description: Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
Date: August 2017
Creator: Yannetta, Christopher James

Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys

Description: Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the interface characteristics were identified. The structure evolution of three multi-principal element alloys were investigated namely CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi. All three alloys formed a single-phase FCC structure in as-cast, cold worked and recrystallized state. No secondary phases precipitated after prolonged heat treatment or mechanical working. The multi-principal element alloys showed less strain gradient plasticity compared to pure metals like Ni during nano-indentation. This was attributed to the highly distorted lattice which resulted in lesser density of geometrically necessary dislocations (GNDs). Dislocation nucleation was studied by low load indentation along with the evaluation of activation volume and activation energy. This was ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Mridha, Sanghita

Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel

Description: The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Tungala, Vedavyas

Microstructural Evolution and Mechanical Response of Materials by Design and Modeling

Description: Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Dutt, Aniket Kumar

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Description: Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Garrison, Seth Thomas

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

Description: We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better ...
Date: May 2017
Creator: Zhao, Zhenghang

Defect Behaviors in Zinc Oxide and Zinc Titanates Ceramics from First Principles Computer Simulations

Description: ZnO and ZnO-TiO2 ceramics have intriguing electronic and mechanical properties and find applications in many fields. Many of these properties and applications rely on the understanding of defects and defect processes in these oxides as these defects control the electronic, catalytic and mechanical behaviors. The goal of this dissertation is to systematically study the defects and defects behaviors in Wurtzite ZnO and Ilmenite ZnTiO3 by using first principles calculations and classical simulations employing empirical potentials. Firstly, the behavior of intrinsic and extrinsic point defects in ZnO and ZnTiO3 ceramics were investigated. Secondly, the effect of different surface absorbents and surface defects on the workfunction of ZnO were studied using DFT calculations. The results show that increasing the surface coverage of hydrocarbons decreased the workfunction. Lastly, the stacking fault behaviors on ilmenite ZnTiO3 were investigated by calculating the Generalized Stacking Fault (GSF) energies using density functional theory based first principles calculations and classical calculations employing effective partial charge inter-atomic potentials. The gamma-surfaces of two low energy surfaces, (110) and (104), of ZnTiO3 were fully mapped and, together with other analysis such as ideal shear stress calculations.
Date: December 2016
Creator: Sun, Wei

The Role of Misfit Strain and Oxygen Content on Formation and Evolution of Omega Precipitate in Metastable Beta-titanium Alloys

Description: β-Ti alloys are widely used in airframe and biomedical applications due to their high ductility, high hardenability, and low elastic modulus. The phase transformations in β-Ti alloys are rather complex due to formation of metastable phases during various thermo-mechanical treatments. One such critical metastable phase, the hexagonal omega (ω) phase, can form in β-Ti alloys under quenching from the high temperature β phase and/or isothermal aging at intermediate temperature. Despite a substantial amount of reported works on the ω phase, there are several critical issues related to the ω formation need to be resolved, e.g. role of alloying elements and oxygen content. Therefore, this dissertation has attempted to provide insights into ω transformation in low misfit (Ti-Mo) and high misfit (Ti-V) binary systems as well as multicomponent (Ti-Nb-Zr-Ta) alloys. The evolution of ω structure, morphology and composition from the early stage (β-solution+quenched) to later stages after prolonged aging are systematically investigated by coupling transmission electron microscopy (TEM), atom probe tomography (APT) and high-energy synchrotron X-ray diffraction techniques. The influence of aging temperature and duration on characteristic of ω phase in Ti-Mo, and Ti-V alloys is addressed in details. It is found that compositional changes during aging can alter the structure, size and morphology of ω precipitates. In low misfit alloys, the ellipsoidal morphology of ω phase was retained during isothermal aging, while in high misfit alloys it changed from ellipsoidal to cuboidal morphology after prolonged aging. Secondly, ω transformation in biomedical Ti-Nb-Zr-Ta alloy is probed in which the micro-hardness was sensitive to microstructural changes. Furthermore, the evolution of oxygen concentration in ω precipitates during various aging conditions in binary Ti-Mo and Ti-V alloys are reported. It has been accepted that interstitial elements such as oxygen can largely alter mechanical behavior and the microstructure of Ti-alloys. Recently, oxygen is intentionally added ...
Date: December 2016
Creator: Hendrickson, Mandana

Angular Analysis of a Wide-Band Energy Harvester based on Mutually Perpendicular Vibrating Piezoelectric Beams

Description: The recent advancements in electronics and the advents of small scaled instruments has increased the attachment of life and functionality of devices to electrical power sources but at the same time granted the engineers and companies the ability to use smaller sources of power and batteries. Therefore, many scientists have tried to come up with new solutions for a power alternatives. Piezoelectric is a promising material which can readily produce continuous electric power from mechanical inputs. However, their power output is dependent upon several factors such as, system natural frequency, their position in the system, the direction of vibration and many other internal and external factors. In this research the working bandwidth of the system is increased through utilizing of two different piezoelectric beam in different directions. The dependency of output power with respect to rotation angle and also the frequency shift due to the rotation angle is studied.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Mirzaabedini, Sohrab

Improving the Long-term Performance of PVC Compositions

Description: PVC are extensively applied in many fields, such as cables, pipes, vehicles, shoes, toys and infusion bags. Generally, plasticizers are blended with PVC to improve the ability of process in industrial production; however, the toxic plasticizers will gradually migrate to the surface of products and such a leakage results in brittleness of plasticized PVC and environmental pollution. In other words, humans are frequently exposed to the potential risks. According to previous researches, cross-linked PVC was proved that it was able to hinder the migration of plasticizer. Thus, in this research, we selected some commercially used cross-linking agents and employed six different tests based on mechanical, tribological and microscopy analysis in order to seek the best solution against plasticizer migration. Thus, we expected to develop a cross-linked flexible PVC which performed improved long-term performance and extended lifetime.
Date: December 2016
Creator: Yang, Yu Chia

Sliding Friction and Wear Behavior of High Entropy Alloys at Room and Elevated Temperatures

Description: Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.
Date: December 2016
Creator: Kadhim, Dheyaa

Design and Manufacture of Molding Compounds for High Reliability Microelectronics in Extreme Conditions

Description: The widespread use of electronics in more avenues of consumer use is increasing. Applications range from medical instrumentation that directly can affect someone's life, down hole sensors for oil and gas, aerospace, aeronautics, and automotive electronics. The increased power density and harsh environment makes the reliability of the packaging a vital part of the reliability of the device. The increased importance of analog devices in these applications, their high voltage and high temperature resilience is resulting in challenges that have not been dealt with before. In particular packaging where insulative properties are vital use polymer resins modified by ceramic fillers. The distinct dielectric properties of the resin and the filler result in charge storage and release of the polarization currents in the composite that have had unpredictable consequences on reliability. The objective of this effort is therefore to investigate a technique that can be used to measure the polarization in filled polymer resins and evaluate reliable molding compounds. A valuable approach to measure polarization in polymers where charge release is tied to the glass transition in the polymer is referred to as thermally stimulated depolarization current (TSDC) technique. In this dissertation a new TSDC measurement system was designed and fabricated. The instrument is an assembly of several components that are automated via a LabVIEW program that gives the user flexibility to test different dielectric compounds at high temperatures and high voltage. The temperature control is enabled through the use of dry air convection heating at a very slow rate enabling controlled heating and cooling. Charge trapping and de-trapping processes were investigated in order to obtain information on insulating polymeric composites and how to optimize it. A number of material properties were investigated. First, polarization due to charges on the filer were investigated using composites containing charged and uncharged particles using ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Garcia, Andres

Microstructure for Enhanced Plasticity and Toughness

Description: Magnesium is the lightest metal with a very high specific strength. However, its practical applicability is limited by its toughness and reliability. Mg, being HCP has low ductility. This makes the improvement of toughness a grand challenge in Mg alloys. Friction stir processing (FSP) is a thermomechanical technique used to effect microstructural modification. Here, FSP was utilized to affect the toughness of WE43 sheets through microstructural modification. Room temperature Kahn-type tests were conducted to measure the toughness of WE43 sheets. Microscopic techniques (SEM, TEM) was utilized to study the effect of various microstructural factors like grain size, texture, constituent particles, precipitates on crack initiation and propagation. Tensile properties were evaluated by mini-tensile tests. Crack growth in WE43 sheets was also affected by mechanics and digital image correlation (DIC) was utilized to study the plastic zone size. The underlying mechanisms affecting toughness of these sheets were understood which will help in formulating ways in improving it. WE43 nanocomposites were fabricated via FSP. Uniform distribution of reinforcements was obtained in the composites. Improved mechanical properties like that of enhanced strength, increased hardness and stiffness were obtained. But contrary to other metal matrix composites which show reduction in ductility with incorporation of ceramic reinforcements, the nanocomposites showed good strength-ductility combination. The composites were precisely characterized and mechanisms governing this property were studied. The nano-length of the reinforcements was observed to be the main criteria and the dislocation-particle interaction, the main reason behind the strength-ductility property.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Das, Shamiparna

Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Description: Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required. This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due to non-stoichiometry determine the effective increased workfunction of the AZO/transition-metal oxide stacks. Reduced hole injection barriers were engineered by ensuring that the surface ad-layers were sufficiently thin to facilitate Fowler-Nordheim tunneling. Improved band alignments resulted in improved hole injection from the surface modified AZO anodes, as demonstrated by I-V characterization of hole only structures. Energy band alignments are proposed based on the aforementioned spectroscopies. Simple bilayer OLEDs employing the surface modified AZO anodes were fabricated and characterized to compare their performance with standard ITO. Anodes consisting of AZO with MoOx or VOx interfacial layers exhibited 50% and 71% improvement in ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Jha, Jitendra