UNT Libraries - 596 Matching Results

Search Results

Elucidation of Photoinduced Energy and Electron Transfer Mechanisms in Multimodular Artificial Photosynthetic Systems
Multimodular designs of electron donor-acceptor systems are the ultimate strategy in fabricating antenna-reaction center mimics for artificial photosynthetic applications. The studied photosystems clearly demonstrated efficient energy transfer from the antenna system to the primary electron donor, and charge stabilization of the radical ion pair achieved with the utilization of secondary electron donors that permits either electron migration or hole transfer. Moreover, the molecular arrangement of the photoactive components also influences the route of energy and electron transfer as observed from the aluminum(III) porphyrin-based photosystems. Furthermore, modulation of the photophysical and electronic properties of these photoactive units were illustrated from the thio-aryl substitution of subphthalocyanines yielding red-shifted Q bands of the said chromophore; hence, regulating the rate of charge separation and recombination in the subphthalocyanine-fullerene conjugates. These multicomponent photosystems has the potential to absorb the entire UV-visible-NIR spectrum of the light energy allowing maximum light-harvesting capability. Furthermore, it permits charge stabilization of the radical ion pair enabling the utilization of the transferred electron/s to be used by water oxidizing and proton reducing catalysts in full-scale artificial photosynthetic apparatuses.
Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications
Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. Applications of the membrane inlet technique have been applied to environmental detection of clandestine drug chemistries and pollutants. Emplacement of a mass spectrometer unit in a vehicle has allowed for large areas to be mapped, obtaining a rapid snapshot of the various concentrations and types of environmental pollutants present. Further refinements and miniaturization have allowed for a backpackable system for analysis in remote harsh environments. Inclusion of atmospheric dispersion modeling has yielded an analytical method of approximating upwind source locations, which has law enforcement, military, and environmental applications. The atmospheric dispersion theories have further been applied to an earth based separation, whereby chemical properties are used to approximate atmospheric mobility, and chemistries are further identified has a portable mass spectrometer is traversed closer to a point source.
Reductive Functionalization of 3D Metal-Methyl Complexes and Characterization of a Novel Dinitrogen Dicopper (I) Complex
Reductive functionalization of methyl ligands by 3d metal catalysts and two possible side reactions has been studied. Selective oxidation of methane, which is the primary component of natural gas, to methanol (a more easily transportable liquid) using organometallic catalysis, has become more important due to the abundance of domestic natural gas. In this regard, reductive functionalization (RF) of methyl ligands in [M(diimine)2(CH3)(Cl)] (M: VII (d3) through CuII (d9)) complexes, has been studied computationally using density functional techniques. A SN2 mechanism for the nucleophilic attack of hydroxide on the metal-methyl bond, resulting in the formation of methanol, was studied. Similar highly exergonic pathways with very low energy SN2 barriers were observed for the proposed RF mechanism for all complexes studied. To modulate RF pathways closer to thermoneutral for catalytic purposes, a future challenge, paradoxically, requires finding a way to strengthen the metal-methyl bond. Furthermore, DFT calculations suggest that for 3d metals, ligand properties will be of greater importance than metal identity in isolating suitable catalysts for alkane hydroxylation in which reductive functionalization is used to form the C—O bond. Two possible competitive reactions for RF of metal-methyl complexes were studied to understand the factors that lower the selectivity of C—O bond forming reactions. One of them was deprotonation of the methyl group, which leads to formation of a methylene complex and water. The other side reaction was metal-methyl bond dissociation, which was assessed by calculating the bond dissociation free energies of M3d—CH3 bonds. Deprotonation was found to be competitive kinetically for most of the 1st row transition metal-methyl complexes (except for CrII, MnII and CuII), but less favorable thermodynamically as compared to reductive functionalization for all of the studied 1st row transition metal complexes. Metal-carbon bond dissociation was found to be less favorable than the RF reactions for most 3d transition ...
Disease Tissue Imaging and Single Cell Analysis with Mass Spectrometry
Cells have been found to have an inherent heterogeneity that has led to an increase in the development of single-cell analysis methods to characterize the extent of heterogeneity that can be found in seemingly identical cells. With an understanding of normal cellular variability, the identification of disease induced cellular changes, known as biomarkers, may become more apparent and readily detectable. Biomarker discovery in single-cells is challenging and needs to focus on molecules that are abundant in cells. Lipids are widely abundant in cells and play active roles in cellular signaling, energy metabolism, and are the main component of cellular membranes. The regulation of lipid metabolism is often disrupted or lost during disease progression, especially in cancer, making them ideal candidates as biomarkers. Challenges exist in the analysis of lipids beyond those of single-cell analysis. Lipid extraction solvents must be compatible with the lipid or lipids of interest. Many lipids are isobaric making mass spectrometry analysis difficult without separations. Single-cell extractions using nanomanipulation coupled to mass spectrometry has shown to be an excellent method for lipid analysis of tissues and cell cultures. Extraction solvents are tunable for specific lipid classes, nanomanipulation prevents damage to neighboring cells, and lipid separations are possible through phase dispersion. The most important aspect of single-cell analysis is that it uncovers the extent of cellular heterogeneity that exists among cellular populations that remains undetected during averaged sampling.
Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection
Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, has significant potential for a range of applications, including neutron detection, photovoltaics, and photocatalysis. Acknowledgements: This work was supported by the Defense Threat Reduction Agency (Grant No.HDTRA1-14-1-0041). James Hilfiker is also gratefully acknowledged for stimulating discussions.
Characterization of Aprotic Solutes and Solvents using Abraham Model Correlations
Experimental data were obtained for the computation of mole fraction solubilities of three dichloronitrobenzenes in organic solvents at 25oC, and solubility ratios were obtained from this data. Abraham model equations were developed for solutes in tributyl phosphate that describe experimental values to within 0.15 log units, and correlations were made to describe solute partitioning in systems that contain either "wet" or "dry" tributyl phosphate. Abraham model correlations have also been developed for solute transfer into anhydrous diisopropyl ether, and these correlations fit in well with those for other ethers. Abraham correlations for the solvation of enthalpy have been derived from experimental and literature data for mesitylene, p-xylene, chlorobenzene, and 1,2-dichlorobenzene at 298.15 K. In addition, the enthalpy contribution of hydrogen bonding between these solutes and acidic solvents were predicted by these correlations and were in agreement with an established method. Residual plots corresponding to Abraham models developed in all of these studies were analyzed for trends in error between experimental and calculated values.
Synthesis and Photochemical Studies of Wide-Band Capturing Sensitizers Capable of Light Energy Harvesting
Artificial photosynthesis, for the purpose of converting solar energy into fuel, is one of the most viable and promising alternative approaches to solve the current global energy and environmental issues. Among the challenges faced in artificial photosynthesis is in building photosystems that can effectively and efficiently perform light absorption and charge separation in broad-band capturing donor-acceptor systems. While having a broad-band capturing antenna system that can harness incoming photons is crucial, another equally important task is to successfully couple the antenna system, while maintaining its optical properties, to an energy or electron acceptor which serves as the reaction center for the generation of charged species of useful potential energy. The stored potential energy will be utilized in different applications such as driving electrons in solar cells or in splitting water for the generation of fuel. Hence, the particular endeavor of this thesis is to study and synthesize molecular/supramolecular systems with wide-band capturing capabilities to generate long-lived charge separated states. The sensitizer used in building these systems in the present study is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, for short, BF2 chelated Azaboron dipyrromenthene or AzaBODIPY. A handful of novel donor-acceptor systems based on AzaBODIPY have been successfully designed, synthesized and their photochemistry have been investigated using various techniques. In these systems, Azabodipy has been covalently attached to several donors like porphyrin, bodipy, subphthalocyanine, phenothiazine, ferrocene, bithiophene and effectively coupled to an electron acceptor, C60. These systems have been fully characterized by NMR, Mass, optical absorption and emission, X-ray crystallographic, computational, electrochemical, and photochemical studies. It has been possible to demonstrate occurrence of efficient electron and energy transfer events and long-lived charge separated states upon photoexcitation in these model compounds. By changing the arrangements of the donor and acceptor entities, it has also been possible to show directional, through-space and through-bond electron transfer processes. The present ...
Synthesis, Characterization and Catalytic Studies of Chiral Gold Acyclic Diaminocarbene Complexes
Chiral gold complexes have been applied in homogeneous catalytic reactions since 1986, in some cases with high enantioselectivity. Acyclic diaminocarbene (ADC) ligands are acyclic analogues of N-heterocyclic carbenes (NHCs) that have larger N-CCarbene-N angles and stronger donating ability. ADCs have been developed as alternatives to phosphine and NHC ligands in homogeneous gold catalysis. In 2012, a new series of chiral gold(I) ADCs were first developed by Slaughter's group and were shown to give remarkable enantioselectivities in some reactions. Because of the hindered rotation of the N-CCarbene bonds of ADC, chiral ADC substituents can easily get close to the metal center in some conformations, although two rotameric structures are formed if the chiral amine is nonsymmetric. The selective of specific ADC conformations was the initial focus of this study. Formational selectivity of one diastereomer of an ADC ligand during synthesis was examines by measuring the relative rates of diastereomer formation in a 1H NMR kinetic study. The potential for converting multiple conformational isomers of ADCs into a single conformation, or at least a simpler mixture, was examined. This study used the analogy that anti- isomer has electronic and structural similarity with urea/thiourea, raising the possibility that 1,8-naphthyridine can be used to favor certain conformations through a self-assembled hydrogen-bonding complex. Gold(I) is a soft carbophilic Lewis acid able to active C-C π bonds to nucleophilic attack, and ADC-gold complexes are potentially useful in this regard. Therefore, biaryl gold(I) ADC complexes were examine with silver salt additives in catalytic 1,6-enyne cyclization reaction. A detailed study found that the counteranion affects the regioselectivities of these reactions more than substituents on the ancillary ADC ligands.
Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules
Quantum chemical methods have been used to model a variety of p- and f-block chemical species to gain insight about their energetic and spectroscopic properties. As well, the studies have provided understanding about the utility of the quantum mechanical approaches employed for the third-row and lanthanide species. The multireference ab initio correlation consistent Composite Approach (MR-ccCA) was utilized to predict dissociation energies for main group third-row molecular species, achieving energies within 1 kcal mol-1 on average from those of experiment and providing the first demonstration of the utility of MR-ccCA for third-row species. Multireference perturbation theory was utilized to calculate the electronic states and dissociation energies of NdF2+, providing a good model of the Nd-F bond in NdF3 from an electronic standpoint. In further work, the states and energies of NdF+ were determined using an equation of motion coupled cluster approach and the similarities for both NdF2+ and NdF were noted. Finally, time-dependent density functional theory and the static exchange approximation for Hartree-Fock in conjunction with a fully relativistic framework were used to calculate the L3 ionization energies and electronic excitation spectra as a means of characterizing uranyl (UO22+) and the isoelectronic compounds NUO+ and UN2.
Theoretical Analysis of Drug Analogues and VOC Pollutants
While computational chemistry methods have a wide range of applications within the set of traditional physical sciences, very little is being done in terms of expanding their usage into other areas of science where these methods can help clarify research questions. One such promising field is Forensic Science, where detailed, rapidly acquired sets of chemical data can help in decision-making at a crime scene. As part of an effort to create a database that fits these characteristics, the present work makes use of computational chemistry methods to increase the information readily available for the rapid identification and scheduling of drugs to the forensic scientist. Ab initio geometry optimizations, vibrational spectra calculations and ESI-MS fragmentation prediction of a group of common psychedelics are here presented. In addition, we describe an under development graphical user interface to perform ab initio calculations using the GAMESS software package in a more accessible manner. Results show that the set of theoretical techniques here utilized, closely approximate experimental data. Another aspect covered in this work is the implementation of a boiling point estimation method based on group contributions to generate chemical dispersion areas with the ALOHA software package. Once again, theoretical results showed to be in agreement with experimental boiling point values. A computer program written to facilitate the execution of the boiling point estimation method is also shown.
Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry
The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications
Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The growth of h-BN(0001) multilayers on Co and Ni, and graphene/h-BN(0001) heterostructures on Co have been studied which meet these criteria. Atomic Layer Epitaxy (ALE) of BN was carried out resulting in the formation of macroscopically continuous h-BN(0001) multilayers using BCl3 and NH3 as precursors. X-ray photoemission spectra (XPS) show that the films are stoichiometric with an average film thickness linearly proportional to the number of BCl3/NH3 cycles. Molecular beam epitaxy (MBE) of C yielded few layer graphene in azimuthal registry with BN/Co(0001) substrate. Low energy electron diffraction (LEED) measurements indicate azimuthally oriented growth of both BN and graphene layers in registry with the substrate lattice. Photoemission data indicate B:N atomic ratios of 1:1. Direct growth temperatures of 600 K for BN and 800 to 900 K for graphene MBE indicate multiple integration schemes for applications in spintronics.
Design of New Monodentate Ligands for Regioselectivity and Enantioselectivity Tuning in Late Transition Metal Catalysis
The ability of gold(I) to activate many types of unsaturated bonds toward nucleophilic attack was not widely recognized until the early 2000s. One major challenge in gold catalysis is the control over regioselectivity when there are two or more possible products as a result of complicated mechanistic pathways. It is well know that the choice of ligand can have dramatic effects on which pathway is being followed but very rarely are the reasons for this selectivity understood. The synthesis of new acyclic diaminocarbenes was developed and a study of the ligand effects on the regioselectivity of a gold-catalyzed domino enyne cyclization hydroarylation reaction and a Nazarov cyclization was undertaken. New chiral acyclic diaminocarbenes were also developed and tested along side new C3-symmetric phosphite ligands in an asymmetric intramolecular hydroamination of allenes. Structure activity correlations were developed for the potential use in further rational ligand design. The synthesis of 6a,7-dihydro-5-amino-dibenzo[c,g]chromene derivatives via a gold-catalyzed domino reaction of alkynylbenzaldehydes in the presence of secondary amines was developed. These were sent to be screened for biological activity.
Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties
In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase corrosion resistance and longevity of the coating. These coatings were evaluated for composition and corrosion using many different types of instrumental and electrochemical techniques. The overall corrosion resistance and mechanical properties were improved with the composite films in comparison to the pure metals, which proves to be advantageous for many economic sectors including the oil and gas industry.
Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization
The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Exploring Inorganic Catalysis with Electronic Structure Simulations
Organometallic catalysis has attracted significant interest from both industry and academia due to its wide applications in organic synthetic transformations. Example of such transformations include the reaction of a zinc carbenoid with olefins to form cyclopropanes. The first project is a computational study using both density functional and correlated wavefunction methods of the reaction between ethylene and model zinc carbenoid, nitrenoid and oxenoid complexes (L-Zn-E-X, E = CH2, NH or O, L = X = I or Cl). It was shown that cyclopropanation of ethylene with IZnCH2I and aziridination of ethylene with IZnNHI proceed via a single-step mechanism with an asynchronous transition state. The reaction barrier for the aziridination with IZnNHI is lower than that of cyclopropanation. Changing the leaving group of IZnNHI from I to Cl, changes the mechanism of the aziridination reaction to a two-step pathway. The calculation results from the epoxidation with IZnOI and ClZnOCl oxenoids suggest a two-step mechanism for both oxenoids. Another important example of organometallic catalysis is the formation of alkyl arenes from arenes and olefins using transition metal catalysis (olefin hydroarylation). We studied with DFT methods the mechanism of a novel Rh catalyst (FlDAB)Rh(TFA)(η2–C2H4) [FlDAB = N,N’ -bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] that converts benzene, ethylene and air-recyclable Cu(II) oxidants to styrene. Possible mechanisms are discussed.
Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry
The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
Forensic Analysis of Ink on Documents Using Direct Analyte-Probed Nanoextraction Coupled Techniques
Analzying questioned documents in a nondestructive nature has been an issue for the forensic science community. Using nondestructive techniques such as video spectral comparator does not give reliable information due to the variations in gray or color levels that are distinguished differently by analysts. Destructive techniques such as chromatography give dependable, qualitative and quantitative, information but involves altering the evidentiary value of these questioned documents. The paradox of document examination becomes a problem when document evidence is involved, especially when trying to preserve its evidentiary value and critical data is needed. Thus, a nondestructive technique has been developed to solve the loopholes in document examinations. Direct analyte-probed nanoextraction (DAPNe) is a nanomanipulation technique that extracts ink directly off the document for further examination. A watermark is left, at most, post-extraction. DAPNe utilizes a tip emitter, pre-filled with a solvent, which is controlled in x-, y-, and z-coordinates via joystick controller and aspirates/extracts using a pressure injector. The versatility of this technique lies within the solvent chemistry and its capability to be coupled to various types of instrumentation. The extraction solvent can be altered to target specific components in the ink. For example, a chelator may be added to target metal ions found in ancient inks or methanol may be added to target certain organic resins and binding agents found in modern inks. In this study, DAPNe has been coupled to nanospray ionization mass spectrometry, fluorescence microscopy, Raman spectroscopy, matrix-assisted laser desorption ionization mass spectrometry, and laser ablation to solve questioned document concerns in the area of falsified or forged documents, redacted documents, and aging studies.
The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations
In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Synthesis and Electron Transfer Studies of Supramolecular Triads
This study expands the role of polythiophenes as an electron donating chromophore within energy harvesting milti-modular donor-acceptor systems. The polythiophene moiety would act as an electron donating spacer group between the donor and acceptor entities, viz., phenothiazine and fulleropyrrolidine, respectively, in the newly synthesized supramolecular triads. The triads 10-{[2,2';5',2"] terthiophene-5-fulleropyrrolidine} phenothiazine and 10-{[2,2'] bithiophene-5-fulleropyrrolidine} phenothiazine were synthesized and characterized through electrochemical and spectroscopic methods to ascertain their structural integrity. the componets of the triads were selected for their established redox parameters. Phenothiazine would act as a secondary donor and would facilitate hole-transfer from the polythiophene primary electron donor, due to its ease of oxidation and yield a long-lived charge separated state. Fulleropyrrolidine would act as an acceptor for ease of reductive capabilities and its ability to hold multiple charges. Finally, occurrence of photoinduced electron transferleading to the anticipated charge separated states is established from advanced transient spectroscopic techniques on these novel supramolecular systems.
Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy
As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient process control. In this work, we investigated the chemical bonding structure of thin fluorocarbon polymer films deposited on low-k dielectric nanostructures, using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Complemented by functional group specific chemical derivatization reactions, fluorocarbon film was established to contain fluorinated alkenes and carbonyl moieties embedded in a highly cross-linked, branched fluorocarbon structure and a model bonding structure was proposed for the first time. In addition, plasma induced damage to high aspect ratio trench low-k structures especially on the trench sidewalls was evaluated both qualitatively and quantitatively. Damage from different plasma processing was correlated with Si-OH formation and breakage of Si-CH3 bonds with increase in C=O functionality. In another endeavor, TiN hard mask defect formation after fluorocarbon plasma etch was characterized and investigated. Finding suggest the presence of water soluble amines that could possibly trigger the formation of TiN surface defect. An effective post etch treatment (PET) methods were applied for etch residue defect removal/suppression.
Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras
We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. (Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on ...
Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications
Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous hydrocarbon films and in self-assembled aminosilane thin films. Comparison of amine concentration under different deposition conditions guided effective process optimization. A time- and cost-effective method such as current FTIR metrology that provides in-depth chemical information about thin films, surfaces, interfaces and bulk layers can be increasingly valuable as critical dimensions continue to scale down and subtle process variances begin to have a significant impact on device performance.
Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues
Laser Ablation Inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy are both powerful imaging techniques. Their applications are numerous and extremely potential in the field of biology. In order to improve upon LA-ICP-MS an in-house built cold cell was developed and its effectiveness studied by imaging Brassica napus seeds. To further apply LA-ICP-MS and Raman imaging to the field of entomology a prong gilled mayfly (Ephemeroptera: Leptophlebiidae) from the Róbalo River, located on Navarino Island in Chile, was studied. Analysis of both samples showcased LA-ICP-MS and Raman spectroscopy as effective instruments for imaging trace elements and larger molecules in biological samples respectively.
Design, Synthesis and Study of Supramolecular Donor – Acceptor Systems Mimicking Natural Photosynthesis Processes
This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor – acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature’s approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typicaly used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary building blocks for the study of the artificial photosynthesis process.
Thin Cr2O3 (0001) Films and Co (0001) Films Fabrication for Spintronics
The growth of Co (0001) films and Cr2O3 (0001)/Co (0001) has been investigated using surface analysis methods. Such films are of potential importance for a variety of spintronics applications. Co films were directly deposited on commercial Al2O3 (0001) substrates by magnetron sputter deposition or by molecular beam epitaxy (MBE), with thicknesses of ~1000Å or 30Å, respectively. Low Energy Electron Diffraction (LEED) shows hexagonal (1x1) pattern for expected epitaxial films grown at 800 K to ensure the hexagonally close-packed structure. X-ray photoemission spectroscopy (XPS) indicates the metallic cobalt binding energy for Co (2p3/2) peak, which is at 778.1eV. Atomic force microscopy (AFM) indicates the root mean square (rms) roughness of Co films has been dramatically reduced from 10 nm to 0.6 nm by optimization of experiment parameters, especially Ar pressure during plasma deposition. Ultrathin Cr2O3 films (10 to 25 Å) have been successfully fabricated on 1000Å Co (0001) films by MBE. LEED data indicate Cr2O3 has C6v symmetry and bifurcated spots from Co to Cr2O3 with Cr2O3 thickness less than 6 Å. XPS indicates the binding energy of Cr 2p(3/2) is at 576.6eV which is metallic oxide peak. XPS also shows the growth of Cr2O3 on Co (0001) form a thin Cobalt oxide interface, which is stable after exposure to ambient and 1000K UHV anneal.
Accurate Energetics Across the Periodic Table Via Quantum Chemistry
Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transition metals. Studies of properties and energetics of chemical compounds through various computational methods are also the focus of this research, including the C-O bond cleavage of dimethyl ether by transition metal ions, the study of thermochemical and structural properties of small silicon containing compounds with the Multi-Reference correlation consistent Composite Approach, the development of a composite method for heavy element systems, spectroscopic of compounds containing noble gases and metals (ArxZn and ArxAg+ where x = 1, 2), and the effects due to Basis Set Superposition Error (BSSE) on these van der Waals complexes.
Self-assembly Polymeric Nanoparticles Composed of Polymers Crosslinked with Transition Metals for Use in Drug Delivery
A major drawback of chemotherapy is the lack of selectively leading to damage in healthy tissue, which results in severe acute side effects to cancer patients. The use of nanoparticles as a drug delivery system has emerged as novel strategy to overcome the barriers of immunogenic response, controlled release of therapeutic, and targeting the toxicity only to cancerous cells. In this study, polymeric nanoparticles composed of transition metals and particles derived from natural biopolymers have been generated via self-assembly. For example, nanoparticles composed of cobalt crosslinked with albumin (Co-alb NPs) via Co-amine coordination chemistry of lysine residue were syntheisized in various sizes. The method to generate Co-alb NPs involves no thermal heat, organic solvent or any surfactants, which is ideal for the production of large amounts in a timely manner. The Co-alb NPs displayed exceptional stability under physiological conditions (pH 7.4) for several days with minor changes in size; however degradation could be triggered by reductant (reduced glutathione (GSH), 10 mM) with complete disappearance of particles in less than 2 hour. Numerous therapeutics that are highly effective toward cancer cells have been developed; however, many cannot be administered to patients due to poor solubility in water and pH dependent properties. We have successfully encapsulated 7-ethyl-10-hydroxycampothecin (SN-38) into Co-alb NPs with encapsulation efficiency as high as 94% and loading capacities greater than 30%. We employed an emulsion-solvent evaporation method to incorporate SN-38 into Co-alb (SN38 Co-Alb NPs). Release of the drug from SN38 Co-Alb NPs was determined for particles incubated in PBS or PBS-GSH. SN38 Co-Alb NPs were exceptionally stable under physiological condition (PBS pH 7.4), but exhibited sustained release of SN-38 over time in the presence of GSH. Uptake and toxicity of the particles were also investigated in a gastric carcinoma cell line (SNU-5) where high degrees of macropinocytic uptake ...
Design, Synthesis, and Characterization of Aqueous Polymeric Hybrid Composites and Nanomaterials of Platinum(II) and Gold(I) Phosphorescent Complexes for Sensing and Biomedical Applications
The two major topics studied in this dissertation are the gold(I) pyrazolate trimer {[Au(3-R,5-R’)Pz]3} complexes in aqueous chitosan polymer and phosphorescent polymeric nanoparticles based on platinum(II) based complex. The first topic is the synthesis, characterization and optical sensing application of gold(I) pyrazolate trimer complexes within aqueous chitosan polymer. A gold(I) pyrazolate trimer complex, {[Au(3-CH3,5-COOH)Pz]3}, shows high sensitivity and selectivity for silver ions in aqueous media, is discussed for optical sensing and solution-processed organic light emitting diodes (OLEDs) applications. Gold(I) pyrazolate trimer complexes are bright red emissive in polymeric solution and their emission color changes with respect to heavy metal ions, pH and dissolved carbon dioxide. These photophysical properties are very useful for designing the optical sensors. The phosphorescent polymeric nanoparticles are prepared with Pt-POP complex and polyacrylonitrile polymer. These particles show excellent photophysical properties and stable up to >3 years at room temperature. Such nanomaterials have potential applications in biomedical and polymeric OLEDs. The phosphorescent hybrid composites are also prepared with Pt-POP and biocompatible polymers, such as chitosan, poly-l-lysine, BSA, pnipam, and pdadmac. Photoluminescent enhancement of Pt-POP with such polymers is also involved in this study. These hybrid composites are promising materials for biomedical applications such as protein labeling and bioimaging.
Computational Modeling of Small Molecules
Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained in an electronic structure calculation is explained. The ability to more completely describe the orbital space through the extrapolation of energies obtained at increasing quality of basis set is investigated with the use of the Sapporo-nZP-2012 family of basis set. The correlation consistent Composite Approach (ccCA) is utilized to compute the enthalpies of formation of a set of molecules and the accuracy is compared with the target method, CCSD(T,FC1)/aug-cc-pCV∞Z-DK. Both methodologies are able to produce computed enthalpies of formation that are typically within 1 kcal mol-1 of reliable experiment. This demonstrates that ccCA can be used instead of much more computationally intensive methods (in terms of memory, processors, and time required for a calculation) with the expectation of similar accuracy yet at a reduced computational cost. The enthalpies of formation for systems containing s-block elements have been computed using the multireference variant of ccCA (MR-ccCA), which is designed specifically for systems that require an explicit treatment of nondynamical correlation. Density functional theory (DFT) has been used for the prediction of the structural properties of a set of lanthanide trihalide molecules as well as the reaction energetics for the rearrangement of diphosphine ligands around a triosmium cluster.
The Impact of Computational Methods on Transition Metal-containing Species
Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of methoxyethane and methanol. These species provide excellent representative examples of lignin degradation via C-O bond cleavage. PBE0, which performed better than other considered DFT functionals, was used to investigate late 3d (Fe, Co, and Ni), 4d (Ru, Rh, and Pd), and 5d (Re, Os, and Ir) transition metal atom mediated Cβ -O bond activation of the β–O–4 linkage of lignin. Additionally, the impact of the choice of DFT functionals, basis sets, implicit solvation models, and layered quantum chemical methods (i.e., ONIOM, Our Own N-layered Integrated molecular Orbital and molecular Mechanics) was investigated for the prediction of pKa for a set of Ni-group metal hydrides (M = Ni, Pd, and Pt) in acetonitrile. These investigations have provided insight about the utility of a number of theoretical methods in the computation of thermodynamic properties of transition metal hydrides in solution. As single reference wavefunction methods commonly perform poorly in describing molecular systems that involve bond-breaking and forming or electronic near-degeneracies and are typically best described with computationally costly multireference wavefunction-based methods, it is imperative to a priori analyze the multireference character for molecular systems so that the proper methodology choice is applied. In this work, diagnostic criteria for assessing the multireference character of 4d transition metal-containing molecules was investigated. Four diagnostics were considered in this work, including the weight of the leading configuration of the CASSCF wavefunction, C02; T1, ...
Fundamental Studies of Copper Corrosion in Interconnect Fabrication Process and Spectroscopic Investigation of Low-k Structures
In the first part of this dissertation, copper bimetallic corrosion and its inhibition in cleaning processes involved in interconnect fabrication is explored. In microelectronics fabrication, post chemical mechanical polishing (CMP) cleaning is required to remove organic contaminants and particles left on copper interconnects after the CMP process. Use of cleaning solutions, however, causes serious reliability issues due to corrosion and recession of the interconnects. In this study, different azole compounds are explored and pyrazole is found out to be a potentially superior Cu corrosion inhibitor, compared to the most widely used benzotriazole (BTA), for tetramethyl ammonium hydroxide (TMAH)-based post CMP cleaning solutions at pH 14. Micropattern corrosion screening results and electrochemical impedance spectroscopy (EIS) revealed that 1 mM Pyrazole in 8 wt% TMAH solution inhibits Cu corrosion more effectively than 10 mM benzotriazole (BTA) under same conditions. Moreover, water contact angle measurement results also showed that Pyrazole-treated Cu surfaces are relatively hydrophilic compared to those treated with BTA/TMAH. X-ray photoelectron spectroscopy (XPS) analysis supports Cu-Pyrazole complex formation on the Cu surface. Overall Cu corrosion rate in TMAH-based highly alkaline post CMP cleaning solution is shown to be considerably reduced to less than 1Å/min by addition of 1 mM Pyrazole. In the second part, a novel technique built in-house called multiple internal Reflection Infrared Spectroscopy (MIR-IR) was explored as a characterization tool for characterization of different low-k structures.In leading edge integrated circuit manufacturing, reduction of RC time delay by incorporation of porous ultra low-k interlayer dielectrics into Cu interconnect nanostructure continues to pose major integration challenges. The main challenge is that porous structure renders interlayer dielectrics mechanically weak, chemically unstable and more susceptible to the RIE plasma etching damages. Besides the challenge of handling weak porous ultra low-k materials, a lack of sensitive metrology to guide systematic development of plasma etching, ...
Biological Applications of a Strongly Luminescent Platinum (II) Complex in Reactive Oxygen Species Scavenging and Hypoxia Imaging in Caenorhabditis elegans
Phosphorescent transition metal complexes make up an important group of compounds that continues to attract intense research owing to their intrinsic bioimaging applications that arise from bright emissions, relatively long excited state lifetimes, and large stokes shifts. Now for biomaging assay a model organism is required which must meet certain criteria for practical applications. The organism needs to be small, with a high turn-over of progeny (high fecundity), a short lifecycle, and low maintenance and assay costs. Our model organism C. elegans met all the criteria. The ideal phosphor has low toxicity in the model organism. In this work the strongly phosphorescent platinum (II) pyrophosphito-complex was tested for biological applications as a potential in vivo hypoxia sensor. The suitability of the phosphor was derived from its water solubility, bright phosphorescence at room temperature, and long excited state lifetime (~ 10 µs). The applications branched off to include testing of C. elegans survival when treated with the phosphor, which included lifespan and fecundity assays, toxicity assays including the determination of the LC50, and recovery after paraquat poisoning. Quenching experiments were performed using some well knows oxygen derivatives, and the quenching mechanisms were derived from Stern-Volmer plots. Reaction stoichiometries were derived from Job plots, while percent scavenging (or antioxidant) activities were determined graphically. The high photochemical reactivity of the complex was clearly manifested in these reactions.
Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model
In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives
Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numerous methods. Synthetic LDH is used in electrode materials, adsorbents, nuclear waste treatment, drug delivery systems, water treatment, corrosion protection coatings, and catalysis. In this dissertation Zn-Al-NO3 derivatives of zaccagnaite (Zn4Al2(OH)12[CO3]·3H2O) are electrochemically synthesized as films and applied to sensing and corrosion resistance applications. First, Zn-Al-NO3 LDH was potentiostatically electrosynthesized on glassy carbon substrates and applied to the electrochemical detection of gallic acid and caffeic acid in aqueous solutions. The modified electrode was then applied to the detection of gallic acid in green tea samples. The focus of the work shifts to corrosion protection of stainless steel. Modified zaccagnaite films were electrodeposited onto stainless steel in multiples layers to reduce defects caused by drying of the films. The films were deposited using a step potential method. The corrosion resistance of the films in a marine environment was investigated while immersed in 3.5 wt.% NaCl environments. Next modified zaccagnaite films were potentiostatically electrodeposited onto stainless steel followed by a hydrophobization reaction with palmitic acid in order to prepare superhydrophobic (>150° contact angle) surfaces. Each parameter of the film synthesis was optimized to produce a surface with the highest possible contact angle. The fifth chapter examines the corrosion resistance of the optimized superhydrophobic film and a hydrophobic film. The hydrophobic film is prepared using the same procedure as the superhydrophobic film except for a difference in electrodeposition potential. The ...
Novel Carborane Derived Semiconducting Thin Films for Neutron Detection and Device Applications
Novel carborane (B10C2H12) and aromatic compounds (benzene, pyridine, diaminobenzene) copolymers and composite materials have been fabricated by electron beam induced cross-linking and plasma enhanced chemical vapor deposition (PECVD) respectively. Chemical and electronic structure of these materials were studied using X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS). UPS suggest that the systematic tuning of electronic structure can be achieved by using different aromatic compounds as co-precursors during the deposition. Furthermore, top of valence band is composed of states from the aromatic moieties implying that states near bottom of the conduction band is derived from carborane moieties. Current- voltage (I-V) measurements on the ebeam derived B10C2HX: Diaminobenzene films suggest that these films exhibit enhanced electron hole separation life time. Enhanced electron hole separation and charge transport are critical parameters in designing better neutron voltaic devices. Recently, PECVD composite films of ortho-carborane and pyridine exhibited enhanced neutron detection efficiency even under zero bias compared to the pure ortho-carborane derived films. This enhancement is most likely due to longer electron-hole separation, better charge transport or a combination of both. The studies determining the main factors for the observed enhanced neutron detection are in progress by fabricating composite films of carborane with other aromatic precursors and by altering the plasma deposition conditions. This research will facilitate the development of highly sensitive and cost effective neutron detectors, and has potential applications in spintronics and photo-catalysis.
Synthesis of Gold Complexes From Diphosphine Ligands and Screening Reactions of Heterocyclic Acetylacetonato (ACAC) Ligands with Transitional Metal Complexes
Syntheses of diphosphine gold (I) complexes from gold THT and two ligands, 4, 5-bis (diphenylphosphino)-4-cyclopenten-1, 3-dione (BPCD) and 2,3-bis(diphenylphosphino)-N-phenylmaleimide (BPPM), were done separately. The reactions happened under ice conditions followed by room temperature conditions and produced two diphosphine gold (I) complexes in moderated yield. Spectroscopic results including nuclear magnetic resonance (NMR) and X-ray crystallography were used to study and determine the structures of the products formed. Moreover, X-rays of all newly synthesized diphosphine gold (I) complexes were compared with the known X-ray structures of other phosphine and diphosphine gold (I) complexes. There were direct resemblances in terms of bond length and angle between these new diphosphine gold (I) complex structures and those already published. For instance, the bond lengths and angles from the newly prepared diphosphine gold (I) complexes were similar to those already published. Where there were some deviations in bond angles and length between the newly synthesized structures and those already published, appropriate explanation was given to explain the deviation. Heterocyclic ligands bearing acetylacetonate (ACAC) side arm(s) were prepared from ethyl malonyl chloride and the heterocyclic compounds 8-hydroxylquinoline, Syn-2-peridoxyaldoxime, quinoxalinol and 2, 6-dipyridinylmethanol. The products (heterocyclic ACAC ligands) from these reactions were screened with transition metal carbonyl compounds in thermolytic reactions. The complexes formed were studied and investigated using NMR and X-ray crystallography. Furthermore, the X-ray structures of the heterocyclic ACAC ligand or ligand A and that of rhenium complex 1 were compared with similar published X-ray structures. The comparison showed there were some similarities in terms of bond length and bond angles.
Molecules and Materials for Excitonic Solar Cells Using P-type Metal Oxide Semiconductors
This dissertation has two intersecting foci; firstly, the discovery of a new methodology for the growth of high surface area cuprous oxide (Cu2O) substrates. Secondly, the synthesis and characterization of electron-accepting molecules, and their incorporation into excitonic solar cells (XSCs) using the Cu2O substrates as electrodes. Increasing the surface area of the semiconductor creates more locations for charge transfer to occur thus increasing the overall efficiency of the device. Zinc oxide (ZnO) has been widely studied, and can be easily grown into many different films with high surface area morphologies. The ZnO films serve as sacrificial templates that allow us to electrochemically grow new semiconductors with the same high surface area morphologies but composed of a material having more desirable electronic properties. A polymer can be applied over the surface of the ZnO nanorod films before etching the ZnO with a weak acid, thereby leaving a polymer nanopore membrane. Cathodic electrodeposition of Cu2O into the membrane nanopores gives Cu2O nanorods. Electron-accepting dyes are designed with tethers that allow for direct attachment to metal oxide semiconductors. After soaking, the semiconductor is coated with a monolayer of a dye and then the coated semiconductor films were made into various dye-sensitized solar cells (DSCs). These cells were studied to determine the electron transport properties at the semiconductor/sensitizer/electrolyte interface.
Applications of Single Reference Methods to Multi-Reference Problems
Density functional theory is an efficient and useful method of solving single-reference computational chemistry problems, however it struggles with multi-reference systems. Modifications have been developed in order to improve the capabilities of density functional theory. In this work, density functional theory has been successfully applied to solve multi-reference systems with large amounts of non-dynamical correlation by use of modifications. It has also been successfully applied for geometry optimizations for lanthanide trifluorides.
Transition Metal Catalyzed Oxidative Cleavage of C-O Bond
The focus of this thesis is on C-O bonds activation by transition metal atoms. Lignin is a potential alternative energy resource, but currently is an underused biomass species because of its highly branched structure. To aid in better understanding this species, the oxidative cleavage of the Cβ-O bond in an archetypal arylglycerol β-aryl ether (β–O–4 Linkage) model compound of lignin with late 3d, 4d, and 5d metals was investigated. Methoxyethane was utilized as a model molecule to study the activation of the C-O bond. Binding enthalpies (ΔHb), enthalpy formations (ΔH) and activation enthalpies (ΔH‡) have been studied at 298K to learn the energetic properties in the C-O bond cleavage in methoxyethane. Density functional theory (DFT) has become a common choice for the transition metal containing systems. It is important to select suitable functionals for the target reactions, especially for systems with degeneracies that lead to static correlation effects. A set of 26 density functionals including eight GGA, six meta-GGA, six hybrid-GGA, and six hybrid-meta-GGA were applied in order to investigate the performance of different types of density functionals for transition metal catalyzed C-O bond cleavage. A CR-CCSD(T)/aug-cc-pVTZ was used to calibrate the performance of different density functionals.
Synthesis of Peropyrene and Tetracene Derivatives for Photochemical Applications
A novel route for the synthesis of the polycyclic aromatic hydrocarbon peropyrene (Pp) is reported along with the efforts to synthesize derivatives of Pp, 2,2′- and 5,5′-linked tetracene dimers as candidates for study as singlet fission materials in photovoltaic devices. Peropyrene was synthesized by the McMurry coupling conditions from phenalenone and low-valent titanium species. The crystal structure of Pp is formed by π-stacked molecular pairs in a herringbone arrangement. The direct functionalization of Pp was studied, and several indirect methods for the functionalization of Pp via phenalenone derivatives are reported. Nucleophilicly dependent, regioselective Michael addition pathways for phenalenone are described. Phenalenone forms a nucleophilic complex with bispinacolatodiboron and yields chiral 3,3′-linked phenalenone dimers and a bicyclo[3.2.1]octane derivative product of an unusual 3,4 addition. An active complex product of phenalenone and (dimethylphenylsilyl)boronic acid pinacolic ester forms Pp directly. The synthesis of 2,2′- and 5,5′-linked tetracene dimers led to the study of the reduction of 1-arylprop-2-yn-1-ol derivatives via TFA-catalyzed hydride transfer from triethylsilane. Substrates with terminal and TMS-protected alkynes showed silane exchange upon reduction. A TMS-protected, terminal alkyne became triethylsilyl-protected by about 50% whereas only triethylsilyl-protected, terminal alkyne was observed from the reduction of an unprotected, terminal alkyne. A new conformational polymorph of 1,4-bis(triisopropylsilyl)buta-1,3-diyne is reported. Five other rotamers are studied by density functional theory as possible candidates of conformational polymorphism by the analysis of torsional strain energies. The relative stabilities and interconversion equilibria of the seven conformational isomers are studied.
Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes
Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Using DFT, the transformation to methanol (CH3OH) from methane (CH4) was examined. The transition metal systems studied for this transformation included a model FeII complex. This first-row transition metal is an economical, Earth-abundant metal. The ligand set for this transformation includes a carbonyl ligand in one set of complexes as well as a phosphite ligand in another. The 3d Fe metal shows the ability to convert alkyls/aryls to their oxidized counterpart in an energetically favorable manner. Also, “superbasic” alkali metal amides were investigated to perform C—H bond cleavage. Toluene was the substrate of interest with Cs chosen to be the metal of interest because of the highly electropositive nature of this alkali metal. These highly electrophilic Cs metal systems allow for very favorable C—H bond scission with a toluene substrate. Finally, the amination and aziridination of C–H and C=C bonds, respectively, by a CuI reagent was studied. The mechanism was investigated using DFT calculations. Presently, these mechanisms involving the use of coinage metals are debated. Our DFT simulations shed some insight into how these transformations occur and ultimately how they can be manipulated.
Pathways for C—H Activation and Functionalization by Group 9 Metals
As fossil fuel resources become more and more scarce, attention has been turned to alternative sources of fuels and energy. One promising prospect is the conversion of methane (natural gas) to methanol, which requires an initial activation of a C-H bond and subsequent formation of a C-O bond. The most well studied methodologies for both C-H activation and C-O bond formation involve oxidation of the metal center. Metal complexes with facile access to oxidation states separated by four charge units, required for two subsequent oxidations, are rare. Non-oxidative methods to perform C-H bond activation or C-O bond formation must be pursued in order for methane to methanol to become a viable strategy. In this dissertation studies on redox and non-redox methods for both C-H activation and C-O bond formation are discussed. In the early chapters C-O bond formation in the form of reductive functionalization is modeled. Polypyridine ligated rhodium complexes were studied computationally to determine the properties that would promote reductive functionalization. These principles were then tested by designing an experimental complex that could form C-O bonds. This complex was then shown to also work in acidic media, a critical aspect for product stabilization. In the later chapters, non-oxidative C-H activation is discussed with Ir complexes. Both sigma bond metathesis and concerted metalation deprotonation were investigated. For the former, the mechanism for an experimentally known complex was elucidated and for the latter the controlling factors for a proposed catalyst were explored.
Application of the Correlation Consistent Composite Approach to Biological Systems and Noncovalent Interactions
Advances in computing capabilities have facilitated the application of quantum mechanical methods to increasingly larger and more complex chemical systems, including weakly interacting and biologically relevant species. One such ab initio-based composite methodology, the correlation consistent composite approach (ccCA), has been shown to be reliable for the prediction of enthalpies of formation and reaction energies of main group species in the gas phase to within 1 kcal mol-1, on average, of well-established experiment, without dependence on experimental parameterization or empirical corrections. In this collection of work, ccCA has been utilized to determine the proton affinities of deoxyribonucleosides within an ONIOM framework (ONIOM-ccCA) and to predict accurate enthalpies of formation for organophosphorus compounds. Despite the complexity of these systems, ccCA is shown to result in enthalpies of formation to within ~2 kcal mol-1 of experiment and predict reliable reaction energies for systems with little to no experimental data. New applications for the ccCA method have also been introduced, expanding the utility of ccCA to solvated systems and complexes with significant noncovalent interactions. By incorporating the SMD solvation model into the ccCA formulation, the Solv-ccCA method is able to predict the pKa values of nitrogen systems to within 0.7 pKa unit (less than 1.0 kcal mol-1), overall. A hydrogen bonding constant has also been developed for use with weakly interacting dimers and small cluster compounds, resulting in ccCA interaction energies for water clusters and dimers of the S66 set to within 1.0 kcal mol-1 of well-established theoretical values.
The Mechanisms of Human Glutathione Synthetase and Related Non-Enyzmatic Catalysis
Human glutathione synthetase (hGS) is a homodimeric enzymes that catalyzes the second step in the biological synthesis of glutathione, a critical cellular antioxidant. The enzyme exhibits negative cooperativity towards the γ-glutamylcysteine (γ-GC) substrate. In this type of allosteric regulation, the binding of γ-GC at one active site significantly reduces substrate affinity at a second active site over 40 Å away. The presented work explores protein-protein interactions, substrate binding, and allosteric communication through investigation of three regions of hGS: the dimer interface, the S-loop, and the E-loop. Strong electrostatic interactions across the dimer interface of hGS maintain the appropriate tertiary and quaternary enzymatic structure needed for activity. The S-loop and E-loop of hGS form walls of the active site near γ-GC, with some residues serving to bind and position the negatively cooperative substrate. These strong interactions in the active site serve as a trigger for allosteric communication, which then passes through hydrophobic interactions at the interface. A comprehensive computational and experimental approach relates hGS structure with activity and regulation. ATP-grasp enzymes, including hGS, utilize ATP in the nucleophilic attack of a carboxylic acid in a reaction thought to proceed through the formation of an acylphosphate intermediate. Small metal cations are known to chelate the terminal phosphates of actives site ATP, yet the role of these atoms remains unclear. In the presented work, a computational metal substitution study establishes the role these divalent cations in the catalysis of peptide bonds. The simple model is used to determine the impact of metal cations on the thermodynamics and kinetics, an important stepping stone in understanding the importance of metal cations in larger biological systems.
First-Semester General Chemistry Curriculum Comparison of Student Success on ACS Examination Questions Grouped by Topic Following an Atoms First or Traditional Instructional Approach
This study uses the ACS first-term general chemistry exam to determine if one curriculum approach is more effective in increasing student success than the other based on their performance on the ACS exam. Two chemistry curriculum approaches were evaluated in this study; the traditional curriculum (TC) and the Atoms First (AF) approach. The sample population was first-semester general chemistry students at Collin College in Frisco, TX. An independent sample t-test was used to determine if there were differences in overall performance between the two curriculum approaches on two different versions of the ACS exam. The results from this study show that AF approach may be a better alternative to the TC approach as they performed statistically significantly better on the 2005 exam version. Factor analysis was used to determine if there were differences between the two curriculum approaches by topic on the ACS exam. Eight different topics were chosen based on topics listed on the ACS Examinations Institute Website. The AF students performed better at a statistically significant level than the TC students on the topics of descriptive chemistry and periodicity, molecular structure, and stoichiometry. Item response theory was used to determine the chemistry content misconceptions held by the students taught under both curriculum approaches. It was determined that for both curriculum groups the same misconceptions as determined by the Zcrit values persisted.
The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications
The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiNx and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.
Electrodeposition of Nickel and Nickel Alloy Coatings with Layered Silicates for Enhanced Corrosion Resistance and Mechanical Properties
The new nickel/layered silicate nanocomposites were electrodeposited from different pHs to study the influence on the metal ions/layered silicate plating solution and on the properties of the deposited films. Nickel/layered silicate nanocomposites were fabricated from citrate bath atacidic pHs (1.6−3.0), from Watts’ type solution (pH ~4-5), and from citrate bath at basic pH (~9). Additionally, the new nickel/molybdenum/layered silicate nanocomposites were electrodeposited from citrate bath at pH 9.5. The silicate, montmorillonite (MMT), was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The preferred crystalline orientation and the crystalline size of nickel, nickel/layered silicate, nickel/molybdenum, and nickel/molybdenum/layered silicate films were examined by X-ray diffraction. The microstructure of the coatings and the surface roughness was investigated by scanning electron microscopy and atomic force microscopy. Nickel/molybdenum/layered silicate nanocomposites containing low content of layered silicate (1.0 g/L) had increase 32 % hardness and 22 % Young’s modulus values over the pure nickel/molybdenum alloy films. The potentiodynamic polarization and electrochemical impedance measurements showed that the nickel/molybdenum/layered silicate nanocomposite layers have higher corrosion resistance in 3.5% NaCl compared to the pure alloy films. The corrosion current density of the nickel/molybdenum/layered silicate nanocomposite composed of 0.5 g/L MMT is 0.63 µA·cm-2 as compare to a nickel/molybdenum alloy which is 2.00 µA·cm-2.
Diimine(dithiolate)platinum(ii) Chromophores: Synthesis, Spectroscopy, and Material Applications
A series of 28 square-planar dithiol(diimine)platinum(II) chromophoric complexes have been synthesized, characterized, and evaluated for potential efficacy in sensitization of solid state photovoltaic devices to the near-infrared regions of the electromagnetic spectrum. The effect of molecular stacking in the solid state and self-association in solution are shown to influence spectral, electronic, and magnetic properties of the chromophores. Such properties are investigated in the pure form and as partners in donor-acceptor charge transfer adducts. Finally, selected chromophores have been incorporated into single layer schottky diodes as neat films and as dopants in multi-layer organic photovoltaic devices. Evaluation of the devices internal quantum efficiency and voltage-current was measured as proof of concept.
Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells
Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.