UNT Libraries - Browse


Layered Double Hydroxides and the Origins of Life on Earth

Description: A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to the hydroxide layers, while in the 3:1 hosts the square-planar anions have enough space to lie more nearly parallel to the LDH cation layers, giving basal spacings of approximately 8 Å. It has been found that the LDH Mg2Al(OH)6Cl catalyzes the self-addition of cyanide, to give in a one-pot reaction at low concentrations an increased yield of diaminomaleonitrile and in addition, at higher ($0.1M) concentrations, a purple-pink material that adheres to the LDH. We are investigating whether this reaction also occurs with hydrotalcite itself, what is the minimum effective concentration of cyanide, and what can be learned about the products ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2001
Creator: Brister, Brian

Synthesis and properties of novel cage-functionalized crown ethers and cryptands.

Description: A novel cryptand was synthesized which contained a 3,5-disubstituted-4- oxahexacyclo[,6.03,10.05,9.08,11] dodecane "cage" moiety. In alkali metal picrate extraction experiments the cryptand exhibited high avidity towards Rb+ and Cs+, when compared with the corresponding model compound. A computational study of a series of cage-functionalized cryptands and their alkali metal-complexes was performed. The X-ray crystal structure of a K+-complexed bis-cage-annulated 20-crown-6 was obtained. The associated picrate anion was found to be intimately involved in stabilization of the host-guest complex. The interaction energy between the host-guest complex and picrate anion has been calculated, and the energy thereby obtained has been corrected for basis set superposition error.
Date: August 2001
Creator: Hazlewood, Anna

Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines

Description: The second order rate constants for nucleophilic substitution by methoxide of (Z)- and (E)-O-methylbenzohydroximoyl fluorides [C6H4C(F)=NOCH3] with various substituents on the phenyl ring [p-OCH3 (1h, 2h), p-CH3 (1g, 2g), p-Cl (1f, 2f), p-H (1e, 2e), (3,5)-bis-CF3 (1i, 2i)] in 90:10 DMSO:MeOH have been measured. A Hammett plot of these rate constants vs σ values gave positive ρ values of 2.95 (Z isomer) and 3.29 (E isomer). Comparison of these rates with methoxide substitution rates for Omethylbenzohydroximoyl bromide [C6H4C(Br)=NOCH3] and Omethylbenzohydroximoyl chloride [C6H4C(Cl)=NOCH3] reveal an element effect for the Z isomers of Br:Cl:F(1e) = 2.21:1.00:79.7 and for the E isomers of Cl:F(2e) = 1.00:18.3. With the p-OCH3-imidoyl halides the following element effects are found: Br:Cl:F(1h) = 2.78:1.00:73.1 for the Z isomer and Br:Cl:F(2h) = 1.97:1.00:12.1 for the E isomer. Measurement of activation parameters revealed ∆S≠ = -17 eu for 1e and ∆S≠ = -9.9 eu for 2e. Ab initio calculations (HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6- 31+G*//HF/6-31+G*, HF-SCIPCM/6-31+G*//HF/6-31+G*) were performed to define the reaction surface. These calculations demonstrate a relatively large barrier for nucleophilic attack in relation to halogen loss and support the experimental findings that this reaction proceeds by an addition-elimination mechanism (AN# + DN). The imidoyl fluorides have been used to synthesize highly functionalized O-methyloximes by reaction with enolate anions derived from malononitrile, ethyl cyanoacetate, and diethyl malonate. Acid-catalyzed isomerization of compounds containing the O-methyloxime moiety have been investigated with ab initio calculations (HF/6-31+G*, MP2/6- 31+G*//HF/6-31+G*, B3LYP/6-31+G*//HF/6-31+G*). Barriers for rotation around the C-N bond following protonation have been calculated. The calculated barriers are discussed in relation to an isomerization mechanism of protonation-rotation versus a nucleophilic catalysis.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Dolliver, Debra D.

Substitution chemistry of the cobalt complexes RCCo3(CO)9 (R = H, CHO) with the diphosphine ligand: 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd). Syntheses, X-ray structures and reactivity.

Description: The reaction between the tetrahedrane cluster RCCo3(CO)9{R = CHO (1), H (3)} and the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3- dione (bpcd) leads to the replacement of two CO groups and formation of RCCo3(CO)7(bpcd) {R = CHO (2), H (4)}. Clusters 2 and 4 are thermally unstable and readily transform into the new P-C bond cleavage cluster 5. All three clusters 2, 4, and 5 have been isolated and fully characterized in solution by IR and 31P NMR spectroscopy. VT 31P NMR data indicate that the bpcd ligand in RCCo3(CO)7(bpcd) is fluxional at 187 K in THF. Clusters 2, 4, and 5 have been structurally characterized by X-ray diffraction analyses.
Date: December 2001
Creator: Liu, Jie

Metal-Aluminum Oxide Interactions: Effects of Surface Hydroxylation and High Electric Field

Description: Metal and oxide interactions are of broad scientific and technological interest in areas such as heterogeneous catalysis, microelectronics, composite materials, and corrosion. In the real world, such interactions are often complicated by the presence of interfacial impurities and/or high electric fields that may change the thermodynamic and kinetic behaviors of the metal/oxide interfaces. This research includes: (1) the surface hydroxylation effects on the aluminum oxide interactions with copper adlayers, and (2) effects of high electric fields on the interface of thin aluminum oxide films and Ni3Al substrate. X-ray photoelectron spectroscopy (XPS) studies and first principles calculations have been carried out to compare copper adsorption on heavily hydroxylated a- Al2O3(0001) with dehydroxylated surfaces produced by Argon ion sputtering followed by annealing in oxygen. For a heavily hydroxylated surface with OH coverage of 0.47 monolayer (ML), sputter deposition of copper at 300 K results in a maximum Cu(I) coverage of ~0.35 ML, in agreement with theoretical predictions. Maximum Cu(I) coverage at 300 K decreases with decreasing surface hydroxylation. Exposure of a partially dehydroxylated a-Al2O3(0001) surface to either air or 2 Torr water vapor results in recovery of surface hydroxylation, which in turn increases the maximum Cu(I) coverage. The ability of surface hydroxyl groups to enhance copper binding suggests a reason for contradictory experimental results reported in the literature for copper wetting of aluminum oxide. Scanning tunneling microscopy (STM) was used to study the high electric field effects on thermally grown ultrathin Al2O3 and the interface of Al2O3 and Ni3Al substrate. Under STM induced high electric fields, dielectric breakdown of thin Al2O3 occurs at 12.3 } 1.0 MV/cm. At lower electric fields, small voids that are 2-8 A deep are initiated at the oxide/metal interface and grow wider and deeper into the metal substrate, which eventually leads to either physical collapse or dielectric ...
Date: December 2001
Creator: Niu, Chengyu

NMR study of 2-ethylhexyllithium aggregate and 2- ethylhexyllithium/lithium 2-ethyl-1-hexoxide mixed aggregates.

Description: A 1H, 13C, and 6Li NMR study of 2-ethylhexyllithium showed that 2- ethylhexyllithium exists solely as a hexamer in cyclopentane solution over the temperature range from 25 to -65 °C. Furthermore, 2-ethylhexyllithium and lithium 2- ethyl-1-hexoxide were shown to form mixed aggregates when the alkoxide was formed in situ by reacting 2-ethylhexyllithium with 2-ethyl-1-hexanol. A multinuclear, variable temperature NMR study of a sample with an O:Li ratio of 0.2 led to the identification of at least four such aggregates, one of which was found to be a hexamer with the composition R5(RO)Li6. Studies of samples with higher O:Li ratios, up to 0.8, showed additional mixed aggregates present. All solutions containing mixed aggregates were also shown to contain hydrocarbon soluble lithium hydride. A study of lithium 2-ethyl-1- hexoxide indicated that it aggregates in solution as well.
Date: December 2001
Creator: Petros, Robby A.

The preparation and characterization of thermo-sensitive colored hydrogel film and surfactant-free porous polystyrene three-dimensional network.

Description: Polymer hydrogel films change their properties in response to environmental change. This remarkable phenomenon results in many potential applications of polymer hydrogel films. In this thesis colored thermo-sensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel film was prepared by firstly synthesizing polymer latex and secondarily crosslinking the nanoparticles and casting the polymers onto glass. The shape-memory effect has been observed when changing the environmental temperature. The temperature-dependent of turbidity of polymer hydrogel film was measured by HP UVVisible spectrophotometer. This intelligent hydrogel might be used in chemomechanical systems and separation devices as well as sensors. Polymer adsorption plays an important role in many products and processes. In this thesis, surfactant-free three-dimensional polystyrene (PS) nanoparticle network has been prepared. The infrared spectroscopy and solubility experiment are performed to prove the crosslinking mechanism, also the BET method was used to measure the adsorption and desorption of polystyrene network. The BET constant (C) is calculated (C=6.32). The chemically bonded polymer nanoparticle network might have potential applications as catalyst or used for chromatographic columns.
Date: December 2001
Creator: Zhou, Bo

Synthesis of Crown Ether/Ammonium Salt for Electron Transfer Study

Description: The theoretical model of Beratan and Onuchic predicts a large attenuation of ET rates through hydrogen bonds; however, the effect of individual hydrogen bond on electron transfer reaction has not been systematically studied. The organic complexes in this study are a series of crown ether/ammonium salt, which incorporate a redox partner on each component of the complex. The dimethoxynaphthalene redox donor was attached to the crown ether and a series of ammonium salts was synthesized which bear substituted quinone and naphthoquinone acceptor. The complexes characterization and preliminary electron transfer rate measurement were completed with UV/Vis and steady-state emission spectroscopy.
Date: May 2002
Creator: Han, Dong

Kinetic Studies of Hydroxyl and Hydrogen Atom Reactions

Description: Gas phase kinetics of the reactions involving hydroxyl radical and hydrogen atom were studied using experimental and ab initio theoretical techniques. The rate constant for the H + H2S reaction has been measured from 298 to 598 K by the laser photolysis/resonance fluorescence (LP-RF) technique. The transition state theory (TST) analysis coupled with the measurements support the suggestion that the reaction shows significant curvature in the Arrhenius plot. The LP-RF technique was also used to measure the rate constant of the H + CH3Br reaction over the temperature range 400-813 K. TST and density functional theory (DFT) calculations show that the dominant reaction channel is Br-abstraction. The reaction H + CF2=CF-CF=CF2 was first studied by flash photolysis/resonance fluorescence (FP-RF) method. The experiments of this work revealed distinctly non-Arrhenius behavior, which was interpreted in terms of a change in mechanism. DFT calculations suggest that the adduct is CF2H-CF•-CF=CF2. At lower temperatures a mixture of this molecule and CF2•-CFH-CF=CF2 is likely. The theoretical calculations show that H atom migrates in the fluoroethyl radicals through a bridging intermediate, and the barrier height for this process is lower in the less fluorinated ethyl radical. High level computations were also employed in studies of the rate constants of OH + chloroethylenes reactions. VTST calculations indicate that, except the reaction of OH + C2Cl4, these reactions present a complex behavior. For OH + C2Cl4, conventional TST calculation shows a simple positive temperature-dependence behavior.
Date: May 2002
Creator: Hu, Xiaohua

An Analysis of the Effectiveness of Computer Assisted Instruction in General Chemistry at an Urban University.

Description: The science-major General Chemistry sequence offered at the University of Houston has been investigated with respect to the effectiveness of recent incorporation of various levels of computer technology. As part of this investigation, questionnaire responses, student evaluations and grade averages and distributions from up to the last ten years have been analyzed and compared. Increased use of web-based material is both popular and effective, particularly with respect to providing extra information and supplemental questions. Instructor contact via e-mail is also well-received. Both uses of technology should be encouraged. In contrast, electronic classroom presentation is less popular. While initial use may lead to improved grades and retention, these levels decrease quickly, possibly due to a reduction in instructor spontaneity.
Date: May 2002
Creator: McGuffey, Angela

Fluorination Effect on the Conformational Properties of Alkanes

Description: A Series of fluorophores of the general formular P(CF2)nP and P(CF2)n-1CF3 has been synthesized. Copper catalyzed coupling of 1-bromopyrene and the corresponding mono and di-iodoperfluoroalkanes were used in most cases. For the n=3 dimer, a novel 1,w-perfluoroalkylation of pyrene via bis-decarboxylation of hexafluorogultaric acid was utilized. These compounds, along with suitable hydrocarbon analogs, are being used to study the flexibility of fluorocarbon chains using emission. We have found that the excimer formation for the fluorinated pyrene monomers is highly dependent on concentration and is less efficient than for pyene. Excimer formation for the fluorinated pyrene dimers is much more efficient than for the fluorocarbon monomers and is only slightly concentraion dependent. Steady-state emission spectra indicate hydrocarbon dimers-models form excimers more efficiently than the fluorinated dimers suggesting the fluorinated chains are stiffer than the hydrocarbons. We conducted the temperature-dependent studies and quantified the conformational difference.
Date: May 2002
Creator: Xu, Wenjian

A Computational Study on 18+δ Organometallics

Description: The B3LYP density functional has been used to calculate properties of organometallic complexes of Co(CO)3 and ReBr(CO)3, with the chelating ligand 2,3-bisphosphinomaleic anhydride, in 19- and 18-electron forms. The SBKJC-21G effective core potential and associated basis set was used for metals (Co/Re) and the 6-31G* basis set was used for all other elements. The differences of bond angles, bond distances, natural atomic charges and IR vibrational frequencies were compared with the available experimental parameters. The differences between the 19- and 18-electron systems have been analyzed. The results reveal that the 19th electron is mostly distributed over the ligand of 2,3-bisphosphinomaleic anhydride, although partially localized onto the metal fragment in 1 and 2*. Two different methods, IR-frequencies and natural atomic charges, were used to determine the value of δ. Present computed values of δ are compared with available experimental values, and predictions are made for unknown complexes.
Date: May 2002
Creator: Yu, Liwen

Electrodeposition of Diamond-like Carbon Films

Description: Electrodeposition of diamond-like carbon (DLC) films was studied on different substrates using two different electrochemical methods. The first electrochemical method using a three-electrode system was studied to successfully deposit hydrogenated DLC films on Nickel, Copper and Brass substrates. The as-deposited films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV). A variety of experimental parameters were shown to affect the deposition process. The second electrochemical method was developed for the first time to deposit hydrogen free DLC films on Ni substrates through a two-electrode system. The as-deposited films were characterized by Raman spectroscopy and FTIR. According to Raman spectra, a high fraction of diamond nanocrystals were found to form in the films. Several possible mechanisms were discussed for each deposition method. An electrochemical method was proposed to deposit boron-doped diamond films for future work.
Date: August 2002
Creator: Chen, Minhua

Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Description: Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime (DMG) probe molecules. The detection of Ni2+ was based on the appearance of a unique infrared absorption peak at 1572 cm-1 that corresponds to the C=N stretching mode in the nickel dimethylglyoximate, Ni(DMG)2, complex. The suitable operational pH range for the nickel infrared sensor is between 6-8. The detection limit of the nickel infrared sensor is 1 ppm in the sample solution of pH=8. ATR - FTIR spectroscopy was used to study the changes that the hydride mode underwent when subjected to different environments. The presence of trace amounts of Cu2+ in HF solutions was found to roughen the silicon ...
Date: August 2002
Creator: Ponnuswamy, Thomas Anand

NMR Study of n-Propyllithium Aggregates

Description: A variable temperature 1H, 13C, and 6Li NMR study of n-propyl-6Li-lithium showed five different aggregates, similar to that in the literature as (RLi)n, n= 6, 8, 9, 9, 9. There were also a number of additional new species, identified as lithium hydride containing aggregates. Unexpectedly, a series of 13C{1H} 1-D NMR experiments with selective 6Li decoupling showed evidence for 13C-6Li spin-spin coupling between the previously reported (RLi)n aggregates and various hydride species.
Date: December 2002
Creator: Davis, James W.

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Description: The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Halcom-Yarberry, Faith Marie

Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Description: The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state theory. The energy of NS was computed via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results were employed with three working reactions to find ΔfH0(NS) = 277.3 ± 2 kJ mol-1 and ΔfH298(NS) = 278.0 ± 2 kJ mol-1. This thermochemistry is consistent with, but much more precise than, earlier literature values. A kinetic study of the reaction of H + CH2CCl2 was conducted over the temperature range of 298 - 680 K. The reaction was found to be pressure dependent and results of the rate constants and their interpretation via unimolecular rate theory are ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Peebles, Lynda Renee

Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Description: Benzenesulfonates, para-substituted with amine, chloride and methyl groups were successfully incorporated into layered double hydroxides of two different compositions, 2:1 Mg-Al LDH and 2:1 Zn-Al LDH. These parent materials were also doped with small amounts of nickel and the differences in the two systems were studied. The hexamethylenetetramine route of layered double hydroxide synthesis was investigated to verify if the mechanism is indeed homogeneous. This included attempting preparation of 2:1 Mg-Al LDH, 2:1 Zn-Al LDH and 2:1 Zn-Cr LDH with two different concentrations of hexamethylenetetramine. The analytical data of the products suggest that the homogeneous precipitation may not be the true mechanism of reaction involved in LDH synthesis by this method.
Date: May 2007
Creator: Ambadapadi, Sriram

Metals in Chemistry and Biology: Computational Chemistry Studies

Description: Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
Date: May 2007
Creator: Dinescu, Adriana

Layered Double Hydroxides as Anion- and Cation-Exchanging Materials

Description: Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.
Date: May 2007
Creator: Richardson, Mickey Charles

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed advantages of Si/Ge over C analogs.
Date: May 2007
Creator: Yu, Liwen

Photophysical properties of pyrene, 2,7 diazapyrene and 1,3-bis(β-naphthyl)propane.

Description: The luminescence properties of Van Der Waals' dimers and clusters of pyrene and diazapyrene have been investigated. Excimers, dimeric species which are associative in an excited electronic state and dissociative in their ground state, have long been established and play an important role in many areas of photochemistry. My work here focuses on the luminescence and absorption properties of ground state dimers/aggregates, which are less understood, and allows further characterization of the ground state and excited state association of these aromatic molecules.
Date: August 2007
Creator: Boateng, Stephen

Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters.

Description: The kinetics for the bridge-to-chelate isomerization of the dppe ligand in H4Ru4(CO)10(dppe) have been investigated by UV-vis and NMR spectroscopies over the temperature range of 308-328 K. The isomerization of the ligand-bridged cluster 1,2-H4Ru4(CO)10(dppe) was found to be reversible by 31P NMR spectroscopy, affording a Keq = 15.7 at 323 K in favor of the chelating dppe isomer. The forward (k1) and reverse (k-1) first-order rate constants for the reaction have been measured in different solvents and in the presence of ligand trapping agents (CO and PPh3). On the basis of the activation parameters and reaction rates that are unaffected by added CO and PPh3, a sequence involving the nondissociative migration of a phosphine moiety and two CO groups between basal ruthenium centers is proposed and discussed. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligands dppbz proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(dppbz) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C4H4]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(dppbz) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(dppbz), molecular structure of both the isomers have been determined by X-ray crystallography. The kinetics for the ligand isomerization has been investigated by UV-vis and 1H NMR spectroscopy in toluene solution over the temperature range of 318-343 K. On the basis of kinetic data conducted in the presence of added CO and the Eyring activation parameters, a non-dissociative phosphine migration across one of the Os-Os bonds is proposed. Ortho metalation of one of the phenyl groups associated with the dppbz ligand is triggered by near-UV photolysis of the chelating cluster 1,1-Os3(CO)10(dppbz). The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts with the diphosphine ligand 3,4­bis(diphenylphosphino)-5-methoxy-2(5)H-furanone (bmf) at 25 ºC to give the bmf-bridged cluster 1,2-Os3(CO)10(bmf). Heating 1,2-Os3(CO)10(bmf) leads to an equilibrium with the chelating isomer 1,1-Os3(CO)10(bmf). The molecular ...
Date: August 2007
Creator: Kandala, Srikanth

Study of Copper Electrodeposition on Ruthenium Oxide Surfaces and Bimetallic Corrosion of Copper/Ruthenium in Gallic Acid Solution

Description: Ruthenium, proposed as a new candidate of diffusion barrier, has three different kinds of oxides, which are native oxide, electrochemical reversible oxide and electrochemical irreversible oxide. Native oxide was formed by naturally exposed to air. Electrochemical reversible oxide was formed at lower anodic potential region, and irreversible oxides were formed at higher anodic potential region. In this study, we were focusing on the effect of copper electrodeposition on each type of oxides. From decreased charge of anodic stripping peaks and underpotential deposition (UPD) waves in cyclic voltammetry (CV), efficiency of Cu deposition dropped off indicating that interfacial binding strength between Cu and Ru oxides was weakened when the Ru surface was covered with irreversible oxide and native oxide. Also, Cu UPD was hindered by both O2 and H2 plasma modified Ru surfaces because the binding strength between Cu and Ru was weakened by O2 and H2 plasma treatment. Cu/Ru and Cu/Ta bimetallic corrosion was studied for understanding the corrosion behavior between diffusion barrier (Ta and Ru) and Cu interconnects under the post chemical mechanical planarization (CMP) process in semiconductor fabrication. Gallic acid is used in post CMP slurry solution and is known well as antioxidant which is supposed to oxidize itself to prevent other species from oxidizing. However, in this study under the observation of Cu microdot corrosion test, copper was corroded only in gallic acid at specific pH region of alkaline condition which is close to the pH region for post CMP solution formula. With different pH alkaline condition, gallic acid formed different oxidized products which are characterized by cyclic voltammetry and UV-Vis spectroscopy. Therefore, the specific oxidized product from particular pH region condition caused the Cu corrosion. Also, the corrosion rate of Cu microdots was influenced by substrate effect (Cu/Ru and Cu/Ta) and ambient control, which was included ...
Date: August 2007
Creator: Yu, Kyle K.