UNT Libraries - Browse


Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Description: While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
Date: May 2007
Creator: Puthucode Balakrishnan, Anantharamakrishnan

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Description: Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior wear resistance than Ti-6Al-4V.
Date: May 2007
Creator: Samuel, Sonia

Bulk and Interfacial Effects on Density in Polymer Nanocomposites

Description: The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-platelet interface on permeability of polymer nanocomposites is investigated. Nanocomposites of nylon, PET, and PEN were processed by extrusion. Montmorillonite layered silicate (MLS) in a range of concentrations from 1 to 5% was blended with all three resins. Dispersion of the MLS in the matrix was investigated by using one or a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Variation in bulk density via crystallization was analyzed using differential scanning calorimetry (DSC) and polarized optical microscopy. Interfacial densification was investigated using force modulation atomic force microscopy (AFM) and ellipsometry. Mechanical properties are reported. Permeability of all films was measured in an in-house built permeability measurement system. The effect of polymer orientation and induced defects on permeability was investigated using biaxially stretched, small and large cycle fatigue samples of PET and nylon nanocomposites. The effect of annealing in nylon and nanocomposites was also investigated. The measured permeability was compared to predicted permeability by considering the MLS as an ideal dispersion and the matrix as a system with concentration dependent crystallinity.
Date: May 2007
Creator: Sahu, Laxmi Kumari

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Description: The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have been compared and exhibit excellent agreement.
Date: August 2007
Creator: Diercks, David Robert

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the ...
Date: December 2003
Creator: Bilyeu, Bryan

Deposition and Characterization of Pentacene Film.

Description: Many organic materials have been studied to be used as semiconductors, few of them being pentacene and polythiophene. Organic semiconductors have been investigated to make organic thin film transistors. Pentacene has been used in the active region of the transistors. Transistors fabricated with pentacene do not have very high mobility. But in some applications, high mobility is not needed. In such application other properties of organic transistors are used, such as, ease of production and flexibility. Organic thin film transistors (OTFT) can find use as low density storage devices, such as smart cards or I.D. tags, and displays. OTFT are compatible with polymeric substrates and hence can find use as flexible computer screens. This project aims at making 'smart clothes', the cheap way, with pentacene based OTFT. This problem in lieu of thesis describes a way to deposit pentacene films and characterize it. Pentacene films were deposited on substrates and characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The substrate used was ~1500Å platinum on silicon wafer or bare silicon wafer. was used. A deposition system for vacuum deposition of pentacene was assembled. The XRD data for deposited pentacene films shows the presence of two phases, single crystal phase (SCP) and thin film phase (TFP), and the increase in percentage of SCP with increase in substrate temperature during deposition or by annealing the deposited film, in vacuum, at 80°C.
Date: December 2003
Creator: Singh, Nidhi

Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Description: Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films and powder. Cyclic voltammetry and rotation disk electrode voltammetry have been used to study the reaction mechanisms. The results indicate that the film deposition and powder formation follow different reaction schemes. Ce(III)-L complexation is a reversible process, Ce3+ at medium basic pH region (7~10) is electrochemically oxidized to and then CeO2 film is deposited on the substrate. CE mechanism is suggested to be involved in the formation of films, free Ce3+ species is coordinated with OH- at high basic pH region (>10) to Ce2O3 immediately prior to electrochemically oxidation Ce2O3 to CeO2. CeO2 / montmorillonite nanocomposites were electrochemically produced. X-ray ...
Date: December 2003
Creator: Wang, Qi

Hydrophobic, fluorinated silica xerogel for low-k applications.

Description: A new hydrophobic hybrid silica film was synthesized by introducing one silicon precursor (as modifiers) into another precursor (network former). Hybrid films have improved properties. Hydrolysis and condensation of dimethyldiethoxysilane (DMDES) (solvent (EtOH) to DMDES molar ratio R = 4, water to DMDES molar ratio r = 4, 0.01 N HCl catalyst) was analyzed using high-resolution liquid 29Si NMR. It was found that after several hours, DMDES hydrolyzed and condensed into linear and cyclic species. Films from triethoxyfluorosilane (TEFS) have been shown to be promising interlayer dielectric materials for future integrated circuit applications due to their low dielectric constant and high mechanical properties (i.e., Young's modulus (E) and hardness (H)). Co-condensing with TEFS, linear structures from DMDES hydrolysis and condensation reactions rendered hybrid films hydrophobic, and cyclic structures induced the formation of pores. Hydrophobicity characterized by contact angle, thermal stability by thermogravimetric analysis (TGA), Fourier transform Infrared spectroscopy (FTIR), contact angle, and dynamic secondary ion mass spectroscopy (DSIMS), dielectric constant determined by impedance measurement, and mechanical properties (E and H) determined by nanoindentation of TEFS and TEFS + DMDES films were compared to study the effect of DMDES on the TEFS structure. Hybrid films were more hydrophobic and thermally stable. DMDES incorporation affected the dielectric constant, but showed little enhancement of mechanical properties.
Date: May 2004
Creator: Zhang, Zhengping

A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

Description: One of the final steps in fabricating microelectromechanical devices often involves a liquid etch release process. Capillary forces during the liquid evaporation stage after the wet etch process can pull two surfaces together resulting in adhesion of suspended microstructures to the supporting substrate. This release related adhesion can greatly reduce yields. In this report, a wet etch release method that uses polystyrene microspheres in the final rinse liquid is investigated. The polystyrene microspheres act as physical barriers between the substrate and suspended microstructures during the final liquid evaporation phase. A plasma ashing process is utilized to completely remove the polystyrene microspheres from the microstructure surfaces. Using this process, release yields > 90% were achieved. It is found that the surface roughness of gold surfaces increases while that of the silicon is reduced due to a thin oxide that grows on the silicon surface during the plasma process.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Mantiziba, Fadziso

Determination of Wear in Polymers Using Multiple Scratch Test.

Description: Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Date: August 2004
Creator: Damarla, Gowrisankar

Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.

Description: Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to 0.01mM. We found, that the final density of monolayer depends on the concentration of the solution.
Date: August 2004
Creator: Jakubowicz, Agnieszka

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Description: This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Chapla, Kevin

Development of a Novel Grease Resistant Functional Coatings for Paper-based Packaging and Assessment of Application by Flexographic Press

Description: Recent commercial developments have created a need for alternative materials and methods for imparting oil/grease resistance to paper and/or paperboard used in packaging. The performance of a novel grease resistant functional coating comprised of polyvinyl alcohol (PVA), sodium tetraborate pentahydrate (borate) and acetonedicarboxylic acid (ACDA) and the application of said coating by means of flexographic press is presented herein. Application criteria is developed, testing procedures described, and performance assessment of the developed coating materials are made. SEM images along with contact angle data suggest that coating performance is probably attributable to decreased mean pore size in conjunction with a slightly increased surface contact angle facilitated by crosslinking of PVA molecules by both borate ions and ACDA.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Brown, Robert W.

Effect of Silyation on Organosilcate Glass Films

Description: Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfaces are investigated. These experimental results show that HMDS is a promising technique to repair the damage to OSG during the photoresist removal processing and that the heat treatment of the functionalized surfaces causes degradation of the silanes deteriorating the hydrophobicity of the films.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Kadam, Poonam

Synthesis and characterization of crystalline assembly of poly Nisopropylacry-lamide)-co-acrylic acid nanoparticles.

Description: In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ~98 °C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH- sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH- sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a thermodynamic perturbation theory combined with lightscattering and spectrometer measurements. It was shown how the volume transition of PNIPAM particles affected the interaction potential and determined a novel phase diagram that had not been observed in conventional colloids. Because both particle size and attractive potential depended on temperature, PNIPAM aqueous dispersion exhibited phase transitions at a fixed particle number density by either increasing or decreasing temperature. The phase transition of PNIPAm-co-AAc colloids was also studied. The results from the comparison between pure PNIPAm and charged PNIPAm colloids showed that the introducing of carboxyl (-COOH) group not only contributed to the synthesis ...
Date: December 2004
Creator: Zhou, Bo

Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

Description: The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates.
Date: May 2005
Creator: Butzloff, Peter Robert

Saturation and foaming of thermoplastic nanocomposites using supercritical CO2.

Description: Polystyrene (PS) nanocomposite foams were prepared using supercritical fluid (SCF) CO2 as a solvent and blowing agent. PS was first in-situ polymerized with a range of concentrations of montmorillonite layered silicate (MLS). The polymerized samples were then compression molded into 1 to 2mm thick laminates. The laminates were foamed in a batch supercritical CO2 process at various temperatures and pressures from 60°-85°C and 7.6-12MPa. The resulting foams were analyzed by scanning electron microscopy to determine effect of MLS on cellular morphology. Differential scanning calorimetry was used to determine the impact of nanocomposite microstructure on glass transition of the foamed polymer. X-ray diffraction spectra suggested that the PS/MLS composite had an intercalated structure at both the 1% and 3% mixtures, and that the intercalation may be enhanced by the foaming process.
Date: May 2005
Creator: Strauss, William C.

A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin.

Description: Single wall carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were dispersed in mineral oil and epoxy resin. The magnetorheological properties of these dispersions were studied using a parallel plate rheometer. Strain sweeps, frequency sweeps, magneto sweeps and steady shear tests were conducted in various magnetic fields. G', G", h* and ty increased with increasing magnetic field, which was partially attributed to the increasing degree of the alignment of nanotubes in a stronger magnetic field. The SWNT/mo dispersions exhibited more pronounced magnetic field dependence than SWNT/ep and MWNT/mo counterparts due to their much lower viscosity. The alignment of SWNTs in mineral oil increased with rising nanotube concentration up to 2.5vol% but were significantly restricted at 6.41vol% due to nanotube flocculation.
Date: May 2005
Creator: Yang, Zhengtao

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Date: August 2005
Creator: Pendse, Siddhi

Synthesis and Characterization of Crystalline Assemblies of Functionalized Hydrogel Nanoparticles

Description: Two series monodispersed nanoparticles of hydroxylpropyl cellulose (HPC) and functionalized poly-N-isopropylamide (PNIPAM) particles have been synthesized and used as building blocks for creating three-dimensional networks, with two levels of structural hierarchy. The first level is HPC nanoparticles were made from methacrylated or degradable cross-linker attached HPC. These nanoparticles could be stabilized at room temperature by residual methacrylate or degradable groups are present both within and on the exterior of HPC nanoparticles. Controlled release studies have been performed on the particle and networks .The nearly monodispersed nanoparticles have been synthesized on the basis of a natural polymer of hydropropylcellulose (HPC) with a high molecular weight using the precipitation polymerization method and self-assembly of these particles in water results in bright colors. The HPC nanoparticles can be potential using as crosslinkers to increase the hydrogels mechanical properties, such as high transparency and rapid swelling/de-swelling kinetics. The central idea is to prepare colloidal particles containing C=C bonds and to use them as monomers - vinylparticles, to form stable particle assemblies with various architectures. This is accomplished by mixing an aqueous suspension of hydrogel nanoparticles (PNIPAM-co-allylamine) with the organic solvent (dichloromethane) to grow columnar crystals. The hydrogels with such a unique crystal structure behavior not only like the hydrogel opals, but also have a unique property: anisotropy.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2005
Creator: Cai, Tong

Indentation induced deformation in metallic materials.

Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason for the inconsistencies in the mechanical properties observed in preliminary testing, more insights can be provided with advanced microscopy techniques where the study can be focused more to understand the deformation behavior under the indenter. These experiments demonstrate that there is a wealth of information in the initial stages of indentation and has led to much more insights into the incipient stages of plasticity.
Date: December 2005
Creator: Vadlakonda, Suman

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Description: Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag and Ni particles causes an increase in the wear loss volume while Al can reduce the wear for both polymeric matrices.
Date: December 2007
Creator: Olea Mejia, Oscar Fernando

Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Description: Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Micrographs of the samples from the SEM revealed that the cell size of the foams reduced and increased with increase in MB concentration and increase in the foaming temperature respectively. Mechanical tests; tensile, compression, shear and impact were performed on the foamed samples. It was noted that between the 20-25% wt. MB, there was an improvement in the mechanical properties. This suggests that at these compositions, there is a high interaction between PCL and MB at the molecular level compared to other compositions. The results indicate that green processing of polymer blends is viable.
Date: December 2007
Creator: Ogunsona, Emmanuel Olusegun

Trapping of hydrogen in Hf-based high κ dielectric thin films for advanced CMOS applications.

Description: In recent years, advanced high κ gate dielectrics are under serious consideration to replace SiO2 and SiON in semiconductor industry. Hafnium-based dielectrics such as hafnium oxides, oxynitrides and Hf-based silicates/nitrided silicates are emerging as some of the most promising alternatives to SiO2/SiON gate dielectrics in complementary metal oxide semiconductor (CMOS) devices. Extensive efforts have been taken to understand the effects of hydrogen impurities in semiconductors and its behavior such as incorporation, diffusion, trapping and release with the aim of controlling and using it to optimize the performance of electronic device structures. In this dissertation, a systematic study of hydrogen trapping and the role of carbon impurities in various alternate gate dielectric candidates, HfO2/Si, HfxSi1-xO2/Si, HfON/Si and HfON(C)/Si is presented. It has been shown that processing of high κ dielectrics may lead to some crystallization issues. Rutherford backscattering spectroscopy (RBS) for measuring oxygen deficiencies, elastic recoil detection analysis (ERDA) for quantifying hydrogen and nuclear reaction analysis (NRA) for quantifying carbon, X-ray diffraction (XRD) for measuring degree of crystallinity and X-ray photoelectron spectroscopy (XPS) were used to characterize these thin dielectric materials. ERDA data are used to characterize the evolution of hydrogen during annealing in hydrogen ambient in combination with preprocessing in oxygen and nitrogen.
Date: December 2007
Creator: Ukirde, Vaishali