UNT Libraries - Browse

ABOUT BROWSE FEED

Explorations with Polycarbocyclic Cage Compounds

Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[7.4.2.01,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated but remarkable acid and base promoted rearrangements of this new cage dione to novel polycyclic systems were observed and subsequently were investigated. The structures of the new systems thereby obtained were determined unequivocally by application of X-ray crystallographic methods. It is noteworthy that the reactions reported herein each provide the corresponding rearranged product in high yield in a single synthetic step. Pi-facial and regioselectivity in the thermal Diels-Alder cycloaddition between hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene- 4,11-dione and ethyl propiolate have been explored. This reaction proceeds via stereospecific approach of the dienophile toward the syn face of the diene p -system. However, [4+2]cycloaddition proceeds with ...
Date: August 1999
Creator: Chong, Hyun-Soon

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases ...
Date: December 1999
Creator: Chen, Li

Diffusion Barriers/Adhesion Promoters. Surface and Interfacial Studies of Copper and Copper-Aluminum Alloys

Description: The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O atomic ratio), only Cu(I) formation is observed. At higher coverages, Cu(0) is observed. These data are in contrast with the observed behavior of copper metal deposited onto SiO2 (Cu/SiO2). The data for Cu/SiO2 show that copper does not wet SiO2 and forms 3-D nuclei. Furthermore, post-annealing experiments performed on Cu0.6Al0.4/SiO2 show that neither de-wetting nor diffusion of copper occurs for temperatures up to 800 K, while Cu diffusion into SiO2 occurs ~ 600 K. These data indicate that aluminum alloyed with copper at the SiO2 interface serves as an effective adhesion promoter and thermal diffusion barrier.
Date: August 2000
Creator: Shepherd, Krupanand Solomon

Substituent Effects: A Computational Study on Stabilities of Cumulenes and Low Barrier Hydrogen Bonds

Description: The effect of substituents on the stabilities of cumulenes-ketenes, allenes, diazomethanes and isocyanates and related systems-alkynes, nitriles and nitrile oxides is studied using the density functional theory (B3LYP, SVWN and BP86) and ab initio (HF, MP2) calculations at the 6-31G* basis set level. Using isodesmic reactions, correlation between stabilization energies of cumulenes and substituent group electronegativities (c BE) is established and the results from DFT and MP2 methods are compared with the earlier HF calculations. Calculations revealed that the density functional methods can be used to study the effect of substituents on the stabilities of cumulenes. It is observed that the cumulenes are stabilized by electropositive substituent groups from s -electron donation and p -electron withdrawal and are destabilized by electronegative substituent groups from n-p donation. The calculated geometries of the cumulenes are compared with the available experimental data.High level ab initio and density functional theory calculations have been used to study the energetics of low-barrier hydrogen bond (LBHB) systems. Using substituted formic acid-formate anion complexes as model LBHB systems, hydrogen bond strength is correlated to the pKa mismatch between the hydrogen bond donor and the hydrogen bond acceptor. LBHB model systems are characterized by the 1H-NMR chemical shift calculations. A linear correlation between the calculated hydrogen bond strength and the predicted 1H-NMR chemical shift was established. It is concluded that the pKa matching within the enzyme active site of the two species involved in the LBHB is important to maximizing catalytic stabilization.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2000
Creator: Kumar, Ganesh Angusamy

Diphosphine Ligand Activation Studies with Organotransition-Metal Compounds

Description: Thermolysis of CoRu(CO)7(m -PPh2) (1) in refluxing 1,2-dichloroethane in the presence of the diphosphine ligands 2,3-bis(diphenylphosphino)maleic anhydride (bma) and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) furnishes the new mixed-metal complexes CoRu(CO)4(μ -P-P)(μ -PPh2) [where P-P = bma (3); bpcd (6)], along with trace amounts of the known complex CoRu(CO)6(PPh3)(μ -PPh2) (4). The requisite pentacarbonyl intermediates CoRu(CO)5(μ -P-P)(μ -PPh2) [where P-P = bma (2); bpcd (5)] have been prepared by separate routes and studied for their conversion to CoRu(CO)4(μ -P-P)(μ -PPh2). The complexes 2/3 and 5/6 have been isolated and fully characterized in solution by IR and NMR spectroscopy. The kinetics for the conversion of 2→3 and of 5→6 were measured by IR spectroscopy in chlorobenzene solvent. On the basis of the first-order rate constants, CO inhibition, and the activation parameters, a mechanism involving dissociative CO loss as the rate-limiting step is proposed. The solid-state structure of CoRu(CO)4(μ -bma)(μ -PPh2) (3) reveals that the two PPh2 groups are bound to the ruthenium center while the maleic anhydride π bond is coordinated to the cobalt atom. Thermolysis of the cluster Ru3(CO)12 with the bis(phosphine)hydrazine ligand (MeO)2PN(Me)N(Me)P(OMe)2 (dmpdmh) in toluene at 75°C furnishes the known clusters Ru4(CO)12[μ -N(Me)N(Me)] (9) and Ru3(CO)11[P(OMe)3] (10), in addition to the new cluster Ru3(CO)10(dmpdmh) (8) and the phosphite-tethered cluster Ru3(CO)9[μ -P(OMe)3] (11). The simple substitution product Ru3(CO)10(dmpdmh), a logical intermediate to clusters 9-11, was synthesized by treating Ru3(CO)12 and dmpdmh with Me3NO in CH2Cl2 at room temperature, and independent thermolysis reactions using cluster 8 were shown to yield clusters 9-11. The tetrahedrane cluster FeCo2(CO)9(μ3-S) reacts with the redox-active ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) to give the disubstituted cluster FeCo2(CO)7(bpcd)(μ3-S) as the sole product. This diphosphine-substituted cluster contains a cobalt-bound, chelating bpcd ligand. The solid-state structure has been unequivocally established by X-ray diffraction analysis. Cyclic voltammetric studies on FeCo2(CO)7(bpcd)(μ3-S) reveal the presence of two quasireversible ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2000
Creator: Wang, Jiancheng

An NMR study of 2-ethyl-1-butyllithium and of 2-ethyl-1-butyllithium/lithium 2-ethyl-1-butoxide mixed aggregates

Description: A 1H, 13C, and 6Li NMR study of 2-ethyl-1-butyllithium indicated that 2-ethyl-1-butyllithium exists only as a hexameric aggregate over the entire temperature range of 25 to - 92.1 ° C in cyclopentane. Reacting 2-ethyl-1-butyllithium with 2-ethyl-1-butanol resulted in alkyllithium/lithium alkoxide mixed aggregates, apparently of the form Ra(RO)bLia+b. A multinuclear, variable temperature NMR study of samples with O:Li ratios of 0.2 and 0.4 showed, in addition to the alkyllithium, the formation of four mixed aggregates, one of them probably an octamer. Higher O:Li ratio samples showed the formation of several other mixed aggregates. Mixing 2-ethyl-1-butyllithium with independently prepared lithium 2-ethyl-1-butoxide formed the same mixed aggregates formed by in situ synthesis of lithium alkoxide. Lithium 2-ethyl-1-butoxide also exists as aggregates in cyclopentane.
Date: May 2001
Creator: Ferreira, Aluisio V. C.

Thermochemical Study of Crystalline Solutes Dissolved in Ternary Hydrogen-Bonding Solvent Mixtures

Description: The purpose of this dissertation is to investigate the thermochemical properties of nonelectrolyte solutes dissolved in ternary solvent mixtures, and to develop mathematical expressions for predicting and describing behavior in the solvent mixtures. Forty-five ternary solvent systems were studied containing an ether (Methyl tert-butyl ether, Dibutyl ether, or 1,4-Dioxane), an alcohol (1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, or 2-Methyl-1-propanol), and an alkane (Cyclohexane, Heptane, or 2,2,4-Trimethylpentane) cosolvents. The Combined NIBS (Nearly Ideal Binary Solvent)/Redlich-Kister equation was used to assess the experimental data. The average percent deviation between predicted and observed values was less than ± 2 per cent error, documenting that this model provides a fairly accurate description of the observed solubility behavior. In addition, Mobile Order theory, the Kretschmer-Wiebe model, and the Mecke-Kempter model were extended to ternary solvent mixtures containing an alcohol (or an alkoxyalcohol) and alkane cosolvents. Expressions derived from Mobile Order theory predicted the experimental mole fraction solubility of anthracene in ternary alcohol + alkane + alkane mixtures to within ± 5.8%, in ternary alcohol + alcohol + alkane mixtures to within ± 4.0%, and in ternary alcohol + alcohol + alcohol mixtures to within ± 3.6%. In comparison, expressions derived from the Kretschmer-Wiebe model and the Mecke-Kempter model predicted the anthracene solubility in ternary alcohol + alkane + alkane mixtures to within ± 8.2% and ± 8.8%, respectively. The Kretschmer-Wiebe model and the Mecke-Kempter model could not be extended easily to systems containing two or more alcohol cosolvents.
Date: May 2001
Creator: Pribyla, Karen J.

Mechanisms of Methoxide Ion Substitution and Acid- Catalyzed Z/E Isomerization of N-Methoxyimines

Description: The second order rate constants for nucleophilic substitution by methoxide of (Z)- and (E)-O-methylbenzohydroximoyl fluorides [C6H4C(F)=NOCH3] with various substituents on the phenyl ring [p-OCH3 (1h, 2h), p-CH3 (1g, 2g), p-Cl (1f, 2f), p-H (1e, 2e), (3,5)-bis-CF3 (1i, 2i)] in 90:10 DMSO:MeOH have been measured. A Hammett plot of these rate constants vs σ values gave positive ρ values of 2.95 (Z isomer) and 3.29 (E isomer). Comparison of these rates with methoxide substitution rates for Omethylbenzohydroximoyl bromide [C6H4C(Br)=NOCH3] and Omethylbenzohydroximoyl chloride [C6H4C(Cl)=NOCH3] reveal an element effect for the Z isomers of Br:Cl:F(1e) = 2.21:1.00:79.7 and for the E isomers of Cl:F(2e) = 1.00:18.3. With the p-OCH3-imidoyl halides the following element effects are found: Br:Cl:F(1h) = 2.78:1.00:73.1 for the Z isomer and Br:Cl:F(2h) = 1.97:1.00:12.1 for the E isomer. Measurement of activation parameters revealed ∆S≠ = -17 eu for 1e and ∆S≠ = -9.9 eu for 2e. Ab initio calculations (HF/6-31+G*, MP2/6-31+G*//HF/6-31+G*, B3LYP/6- 31+G*//HF/6-31+G*, HF-SCIPCM/6-31+G*//HF/6-31+G*) were performed to define the reaction surface. These calculations demonstrate a relatively large barrier for nucleophilic attack in relation to halogen loss and support the experimental findings that this reaction proceeds by an addition-elimination mechanism (AN# + DN). The imidoyl fluorides have been used to synthesize highly functionalized O-methyloximes by reaction with enolate anions derived from malononitrile, ethyl cyanoacetate, and diethyl malonate. Acid-catalyzed isomerization of compounds containing the O-methyloxime moiety have been investigated with ab initio calculations (HF/6-31+G*, MP2/6- 31+G*//HF/6-31+G*, B3LYP/6-31+G*//HF/6-31+G*). Barriers for rotation around the C-N bond following protonation have been calculated. The calculated barriers are discussed in relation to an isomerization mechanism of protonation-rotation versus a nucleophilic catalysis.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Dolliver, Debra D.

Metal-Aluminum Oxide Interactions: Effects of Surface Hydroxylation and High Electric Field

Description: Metal and oxide interactions are of broad scientific and technological interest in areas such as heterogeneous catalysis, microelectronics, composite materials, and corrosion. In the real world, such interactions are often complicated by the presence of interfacial impurities and/or high electric fields that may change the thermodynamic and kinetic behaviors of the metal/oxide interfaces. This research includes: (1) the surface hydroxylation effects on the aluminum oxide interactions with copper adlayers, and (2) effects of high electric fields on the interface of thin aluminum oxide films and Ni3Al substrate. X-ray photoelectron spectroscopy (XPS) studies and first principles calculations have been carried out to compare copper adsorption on heavily hydroxylated a- Al2O3(0001) with dehydroxylated surfaces produced by Argon ion sputtering followed by annealing in oxygen. For a heavily hydroxylated surface with OH coverage of 0.47 monolayer (ML), sputter deposition of copper at 300 K results in a maximum Cu(I) coverage of ~0.35 ML, in agreement with theoretical predictions. Maximum Cu(I) coverage at 300 K decreases with decreasing surface hydroxylation. Exposure of a partially dehydroxylated a-Al2O3(0001) surface to either air or 2 Torr water vapor results in recovery of surface hydroxylation, which in turn increases the maximum Cu(I) coverage. The ability of surface hydroxyl groups to enhance copper binding suggests a reason for contradictory experimental results reported in the literature for copper wetting of aluminum oxide. Scanning tunneling microscopy (STM) was used to study the high electric field effects on thermally grown ultrathin Al2O3 and the interface of Al2O3 and Ni3Al substrate. Under STM induced high electric fields, dielectric breakdown of thin Al2O3 occurs at 12.3 } 1.0 MV/cm. At lower electric fields, small voids that are 2-8 A deep are initiated at the oxide/metal interface and grow wider and deeper into the metal substrate, which eventually leads to either physical collapse or dielectric ...
Date: December 2001
Creator: Niu, Chengyu

Kinetic Studies of Hydroxyl and Hydrogen Atom Reactions

Description: Gas phase kinetics of the reactions involving hydroxyl radical and hydrogen atom were studied using experimental and ab initio theoretical techniques. The rate constant for the H + H2S reaction has been measured from 298 to 598 K by the laser photolysis/resonance fluorescence (LP-RF) technique. The transition state theory (TST) analysis coupled with the measurements support the suggestion that the reaction shows significant curvature in the Arrhenius plot. The LP-RF technique was also used to measure the rate constant of the H + CH3Br reaction over the temperature range 400-813 K. TST and density functional theory (DFT) calculations show that the dominant reaction channel is Br-abstraction. The reaction H + CF2=CF-CF=CF2 was first studied by flash photolysis/resonance fluorescence (FP-RF) method. The experiments of this work revealed distinctly non-Arrhenius behavior, which was interpreted in terms of a change in mechanism. DFT calculations suggest that the adduct is CF2H-CF•-CF=CF2. At lower temperatures a mixture of this molecule and CF2•-CFH-CF=CF2 is likely. The theoretical calculations show that H atom migrates in the fluoroethyl radicals through a bridging intermediate, and the barrier height for this process is lower in the less fluorinated ethyl radical. High level computations were also employed in studies of the rate constants of OH + chloroethylenes reactions. VTST calculations indicate that, except the reaction of OH + C2Cl4, these reactions present a complex behavior. For OH + C2Cl4, conventional TST calculation shows a simple positive temperature-dependence behavior.
Date: May 2002
Creator: Hu, Xiaohua

Hydrogen terminated silicon surfaces: Development of sensors to detect metallic contaminants and stability studies under different environments

Description: Hydrogen terminated silicon surfaces have been utilized to develop sensors for semiconductor and environmental applications. The interaction of these surfaces with different environments has also been studied in detail. The sensor assembly relevant to the semiconductor industry utilizes a silicon-based sensor to detect trace levels of metallic contaminants in hydrofluoric acid. The sensor performance with respect to two non-contaminating reference electrode systems was evaluated. In the first case, conductive diamond was used as a reference electrode. In the second case, a dual silicon electrode system was used with one of the silicon-based electrodes protected with an anion permeable membrane behaving as the quasi reference electrode. Though both systems could function well as a suitable reference system, the dual silicon electrode design showed greater compatibility for the on-line detection of metallic impurities in HF etching baths. The silicon-based sensor assembly was able to detect parts- per-trillion to parts-per-billion levels of metal ion impurities in HF. The sensor assembly developed for the environmental application makes use of a novel method for the detection of Ni2+using attenuated total reflection (ATR) technique. The nickel infrared sensor was prepared on a silicon ATR crystal uniformly coated by a 1.5 micron Nafion film embedded with dimethylglyoxime (DMG) probe molecules. The detection of Ni2+ was based on the appearance of a unique infrared absorption peak at 1572 cm-1 that corresponds to the C=N stretching mode in the nickel dimethylglyoximate, Ni(DMG)2, complex. The suitable operational pH range for the nickel infrared sensor is between 6-8. The detection limit of the nickel infrared sensor is 1 ppm in the sample solution of pH=8. ATR - FTIR spectroscopy was used to study the changes that the hydride mode underwent when subjected to different environments. The presence of trace amounts of Cu2+ in HF solutions was found to roughen the silicon ...
Date: August 2002
Creator: Ponnuswamy, Thomas Anand

Layered Double Hydroxides: Morphology, Interlayer Anion, and the Origins of Life

Description: The preparation of layered double hydroxides via co-precipitation of a divalent/trivalent metal solution against a base results in 1 mm LDH particles with a disorganized metal lattice. Research was performed to address these morphological issues using techniques such as Ostwald ripening and precipitation via aluminate. Another interesting issue in layered double hydroxide materials is the uptake and orientation of anions into the interlayer. Questions about iron cyanide interlayer anions have been posed. Fourier transform infared spectroscopy and powder x-ray diffraction have been used to investigate these topics. It was found that factors such as orientation, anion charge, and anion structure depended on the divalent/trivalent metal ratio of the hydroxide layer and reactivity time. The cyanide self-addition reaction is an important reaction of classical prebiotic chemistry. This reaction has been shown to give rise to amino acids, purines and pyrimidines. At cyanide concentrations similar to that expected on the early earth, hydrolysis to formamide rather than self-addition occurs. One theory to alleviate this side reaction is the use of minerals or clays that are thought to concentrate and catalyze prebiotics of interest. Layered double hydroxides have been studied as a catalyst for this reaction.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Halcom-Yarberry, Faith Marie

Investigations of Thermochemistry and the Kinetics of H Atom Radical Reactions

Description: The thermochemistry of several species, and the kinetics of various H atom radical reactions relevant to atmospheric and combustion chemistry were investigated using ab initio theoretical techniques and the flash photolysis / resonance fluorescence technique. Using ab initio quantum mechanical calculations up to the G3 level of theory, the C-H bond strengths of several alkanes were calculated. The bond strengths were calculated using two working reactions. From the results, it is apparent that the bond strengths decrease as methyl groups are added to the central carbon. The results are in good agreement with recent experimental halogenation kinetic studies. Hydrogen bond strengths with sulfur and oxygen were studied via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results for the bond dissociation energies (ground state at 0 K, units: kJ mol-1) are: S-H = 349.9, S-D = 354.7, HS-H = 376.2, DS-D = 383.4, and HO-H = 492.6. These data compare well with experimental literature. The rate constants for the isotopic reactions of H + H2S, D + H2S, H + D2S, and D + D2S are studied at the QCISD(T)/6-311+G(3df,2p) level of theory. The contributions of the exchange reaction versus abstraction are examined through transition state theory. The energy of NS was computed via CCSD(T) theory, together with extrapolation to the complete basis set limit. The results were employed with three working reactions to find ΔfH0(NS) = 277.3 ± 2 kJ mol-1 and ΔfH298(NS) = 278.0 ± 2 kJ mol-1. This thermochemistry is consistent with, but much more precise than, earlier literature values. A kinetic study of the reaction of H + CH2CCl2 was conducted over the temperature range of 298 - 680 K. The reaction was found to be pressure dependent and results of the rate constants and their interpretation via unimolecular rate theory are ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2002
Creator: Peebles, Lynda Renee

Metals in Chemistry and Biology: Computational Chemistry Studies

Description: Numerous enzymatic reactions are controlled by the chemistry of metallic ions. This dissertation investigates the electronic properties of three transition metal (copper, chromium, and nickel) complexes and describes modeling studies performed on glutathione synthetase. (1) Copper nitrene complexes were computationally characterized, as these complexes have yet to be experimentally isolated. (2) Multireference calculations were carried out on a symmetric C2v chromium dimer derived from the crystal structure of the [(tBu3SiO)Cr(µ-OSitBu3)]2 complex. (3) The T-shaped geometry of a three-coordinate β-diketiminate nickel(I) complex with a CO ligand was compared and contrasted with isoelectronic and isosteric copper(II) complexes. (4) Glutathione synthetase (GS), an enzyme that belongs to the ATP-grasp superfamily, catalyzes the (Mg, ATP)-dependent biosynthesis of glutathione (GSH) from γ-glutamylcysteine and glycine. The free and reactant forms of human GS (wild-type and glycine mutants) were modeled computationally by employing molecular dynamics simulations, as these currently have not been structurally characterized.
Date: May 2007
Creator: Dinescu, Adriana

Layered Double Hydroxides as Anion- and Cation-Exchanging Materials

Description: Layered double hydroxides (LDH) have been principally known as anion-exchanging, clay-like materials for several decades, and continues to be the main driving force for current and future research. The chemical interactions of LDH, with transition metallocyanides, have been a popular topic of investigation for many years, partly due to the use of powder x-ray diffraction and infrared spectroscopy as the main characterization tools. Each transition metallocyanide has a characteristic infrared stretching frequency that can be easily observed, and their respective sizes can be observed while intercalated within the interlayer of the LDH. The ability of LDH to incorporate metal cations or any ions/molecules/complexes, that have a postive charge, have not been previously investigated, mainly due to the chemical and physical nature of LDH. The possibility of cationic incorporation with LDH would most likely occur by surface adsorption, lattice metal replacement, or by intercalation into the LDH interlayers. Although infrared spectroscopy finds it main use through the identification of the anions incorporated with LDH, it can also be used to study and identify the various active and inactive bending and stretching modes that the metal hydroxide layers have.
Date: May 2007
Creator: Richardson, Mickey Charles

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes based on Si3H3+ and Ge3H3+ ligands with terminal hydrogens. The stability of the bridged systems increases from Si to Ge. Corrective scale factors for computed harmonic CºO vibrational frequencies for 31 organometallic complexes have been determined at the HF and B3LYP levels. The scaled B3LYP frequencies exhibit a greater reliability than do HF frequencies. Experimental data have shown that Si/Ge-substituted decapeptides are advantageous over their C analog in vitro and in vivo studies in modern hormone therapy. A computational investigation was carried out on the synthesized decapeptides focusing on position 5 containing Si and Ge. The results have shown that there are some differences in C, Si and Ge-containing analogs. However, further investigations are needed to elucidate the observed advantages of Si/Ge over C analogs.
Date: May 2007
Creator: Yu, Liwen

Synthesis and characterization of diphosphine ligand substituted osmium and ruthenium clusters.

Description: The kinetics for the bridge-to-chelate isomerization of the dppe ligand in H4Ru4(CO)10(dppe) have been investigated by UV-vis and NMR spectroscopies over the temperature range of 308-328 K. The isomerization of the ligand-bridged cluster 1,2-H4Ru4(CO)10(dppe) was found to be reversible by 31P NMR spectroscopy, affording a Keq = 15.7 at 323 K in favor of the chelating dppe isomer. The forward (k1) and reverse (k-1) first-order rate constants for the reaction have been measured in different solvents and in the presence of ligand trapping agents (CO and PPh3). On the basis of the activation parameters and reaction rates that are unaffected by added CO and PPh3, a sequence involving the nondissociative migration of a phosphine moiety and two CO groups between basal ruthenium centers is proposed and discussed. The substitution of the MeCN ligands in the activated cluster 1,2-Os3(CO)10(MeCN)2 by the diphosphine ligands dppbz proceeds rapidly at room temperature to furnish a mixture of bridging and chelating Os3(CO)10(dppbz) isomers and the ortho-metalated product HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C4H4]. Thermolysis of the bridging isomer 1,2-Os3(CO)10(dppbz) under mild conditions gives the chelating isomer 1,1-Os3(CO)10(dppbz), molecular structure of both the isomers have been determined by X-ray crystallography. The kinetics for the ligand isomerization has been investigated by UV-vis and 1H NMR spectroscopy in toluene solution over the temperature range of 318-343 K. On the basis of kinetic data conducted in the presence of added CO and the Eyring activation parameters, a non-dissociative phosphine migration across one of the Os-Os bonds is proposed. Ortho metalation of one of the phenyl groups associated with the dppbz ligand is triggered by near-UV photolysis of the chelating cluster 1,1-Os3(CO)10(dppbz). The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts with the diphosphine ligand 3,4­bis(diphenylphosphino)-5-methoxy-2(5)H-furanone (bmf) at 25 ºC to give the bmf-bridged cluster 1,2-Os3(CO)10(bmf). Heating 1,2-Os3(CO)10(bmf) leads to an equilibrium with the chelating isomer 1,1-Os3(CO)10(bmf). The molecular ...
Date: August 2007
Creator: Kandala, Srikanth

Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.

Description: Symmetrical cage-annulated podands were synthesized via highly efficient synthetic strategies. Mechanisms to account for the key reaction steps in the syntheses are proposed; the proposed mechanisms receive support from the intermediates that have been isolated and characterized. An unusual complexation-promoted elimination reaction was studied, and a mechanism is proposed to account for the course of this reaction. This unusual elimination may generalized to other rigid systems and thus may extend our understanding of the role played by the host molecules in "cation-capture, anion-activation" via complexation with guest molecules. Thus, host-guest interaction serves not only to activate the anion but also may activate the leaving groups that participate in the complexation. Complexation-promoted elimination provides a convenient method to desymmetrize the cage while avoiding protection/deprotection steps. In addition, it offers a convenient method to prepare a chiral cage spacer by introducing 10 chiral centers into the host system in a single synthetic step. Cage-annulated monocyclic hosts that contain a cage-butylenoxy spacer were synthesized. Comparison of their metal ion complexation behavior as revealed by the results of electrospray ionization mass spectrometry (ESI-MS), alkali metal picrate extraction, and pseudohydroxide extraction with those displayed by the corresponding hosts that contain cage-ethylenoxy or cage-propylenoxy spacers reveals the effect of the length of the cage spacer upon the host-guest behavior. A series of cage-annulated cryptands, cavitands and the corresponding non-cage-annulated model compounds have been synthesized. These host molecules display unusual behavior when examined by using ESI-MS techniques, i.e., they bind selectively to smaller alkali metal ions (i.e., Li+ and Na+), a result that deviates significantly from expectations based solely upon consideration of the size-fit principle. It seems likely that this behavior results from the effect of the host topology on host-guest behavior. A series of non-cage-annulated cryptands also have been synthesized. These compounds can serve as starting ...
Date: May 2003
Creator: Chen, Zhibing

Interfacial Electrochemistry and Surface Characterization: Hydrogen Terminated Silicon, Electrolessly Deposited Palladium & Platinum on Pyrolyzed Photoresist Films and Electrodeposited Copper on Iridium

Description: Hydrogen terminated silicon surfaces play an important role in the integrated circuit (IC) industry. Ultra-pure water is extensively used for the cleaning and surface preparation of silicon surfaces. This work studies the effects of ultra-pure water on hydrogen passivated silicon surfaces in a short time frame of 120 minutes using fourier transform infrared spectroscopy – attenuated total reflection techniques. Varying conditions of ultra-pure water are used. This includes dissolved oxygen poor media after nitrogen bubbling and equilibration under nitrogen atmosphere, as well as metal contaminated solutions. Both microscopically rough and ideal monohydride terminated surfaces are examined. Hydrogen terminated silicon is also used as the sensing electrode for a potentiometric sensor for ultra-trace amounts of metal contaminants. Previous studies show the use of this potentiometric electrode sensor in hydrofluoric acid solution. This work is able to shows sensor function in ultra-pure water media without the need for further addition of hydrofluoric acid. This is considered a boon for the sensor due to the hazardous nature of hydrofluoric acid. Thin carbon films can be formed by spin coating photoresist onto silicon substrates and pyrolyzing at 1000 degrees C under reducing conditions. This work also shows that the electroless deposition of palladium and platinum may be accomplished in hydrofluoric acid solutions to attain palladium and platinum nanoparticles on a this film carbon surface for use as an electrode. Catalysis of these substrates is studied using hydrogen evolution in acidic media, cyclic voltammetry, and catalysis of formaldehyde. X-ray diffractometry (XRD) is used to ensure that there is little strain on palladium and platinum particles. Iridium is thought to be a prime candidate for investigation as a new generation copper diffusion barrier for the IC industry. Copper electrodeposition on iridium is studied to address the potential of iridium as a copper diffusion barrier. Copper electrodeposition ...
Date: December 2003
Creator: Chan, Raymond

Study of Interactions Between Diffusion Barrier Layers and Low-k Dielectric Materials for Copper/Low-k Integration

Description: The shift to the Cu/low-k interconnect scheme requires the development of diffusion barrier/adhesion promoter materials that provide excellent performance in preventing the diffusion and intermixing of Cu into the adjacent dielectrics. The integration of Cu with low-k materials may decrease RC delays in signal propagation but pose additional problems because such materials are often porous and contain significant amounts of carbon. Therefore barrier metal diffusion into the dielectric and the formation of interfacial carbides and oxides are of significant concern. The objective of the present research is to investigate the fundamental surface interactions between diffusion barriers and various low-k dielectric materials. Two major diffusion barriers¾ tatalum (Ta) and titanium nitride (TiN) are prepared by DC magnetron sputtering and metal-organic chemical vapor deposition (MOCVD), respectively. Surface analytical techniques, such as X-ray photoelectronic spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed. Ta sputter-deposited onto a Si-O-C low dielectric constant substrate forms a reaction layer composed of Ta oxide and TaC. The composition of the reaction layer varies with deposition rate (1 Å-min-1 vs. 2 Å-sec-1), but in both cases, the thickness of the TaC layer is found to be at least 30 Å on the basis of XPS spectra, which is corroborated with cross-sectional TEM data. Sputter-deposited Cu will not wet the TaC layer and displays facile agglomeration, even at 400 K. Deposition for longer time at 2 Å-sec-1 results in formation of a metallic Ta layer. Sputter deposited Cu wets (grows conformally) on the metallic Ta surface at 300 K, and resists significant agglomeration at up to ~ 600 K. Cu diffusion into the substrate is not observed up to 800 K in the UHV environment. Tetrakis(diethylamido) titanium (TDEAT) interactions with SiO2, Cu and a variety of low-k samples in the presence (~ 10-7 Torr or ...
Date: December 2003
Creator: Tong, Jinhong

Fabrication and light scattering study of multi-responsive nanostructured hydrogels and water-soluble polymers.

Description: Monodispersed microgels composed of poly-acrylic acid (PAAc) and poly(N-isopropylacrylamide) (PNIPAM) interpenetrating networks were synthesized by 2-step method with first preparing PNIPAM microgel and then polymerizing acrylic acid that interpenetrates into the PNIPAM network. The semi-dilute aqueous solutions of the PNIPAM-PAAc IPN microgels exhibit an inverse thermo-reversible gelation. Furthermore, IPN microgels undergo the reversible volume phase transitions in response to both pH and temperature changes associated to PAAc and PNIPAM, respectively. Three applications based on this novel hydrogel system are presented: a rich phase diagram that opens a door for fundamental study of phase behavior of colloidal systems, a thermally induced viscosity change, and in situ hydrogel formation for controlled drug release. Clay-polymer hydrogel composites have been synthesized based on PNIPAM gels containing 0.25 to 4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. Surfactant-free hydroxypropyl cellulose (HPC) microgels have been synthesized in salt solution. In a narrow sodium chloride concentration range from 1.3 to 1.4 M, HPC chains can self-associate into colloidal particles at room temperature. The microgel particles were then obtained in situ by bonding self-associated HPC chains at 23 0C using divinyl sulfone as a cross-linker. The volume phase transition of the resultant HPC microgels has been studied as a function of temperature at various salt concentrations. A theoretical model based on Flory-Huggins free energy consideration has been used to explain the experimental results. Self-association behavior and conformation variation of long chain branched (LCB) poly (2-ethyloxazoline) (PEOx) with a CH3-(CH2)17 (C18) modified surface are investigated using light scattering techniques in various ...
Date: December 2003
Creator: Xia, Xiaohu

Reactivity of Oxide Surfaces and Metal-Oxide Interfaces: Effects of Water Vapor Pressure on Ultrathin Aluminum Oxide Films, and Studies of Platinum Growth Modes on Ultrathin Oxide Films and Their Effects on Adhesion

Description: The reactivity of oxide surfaces and metal-oxide interfaces play an important role in many technological applications such as corrosion, heterogeneous catalysis, and microelectronics. The focus of this research was (1) understanding the effects of water vapor exposure of ultrathin aluminum oxide films under non-ultrahigh vacuum conditions (>10-9 Torr) and (2) characterization of Pt growth modes on ultrathin Ta silicate and silicon dioxide films and the effects of growth modes on adhesion of a Cu overlayer. These studies were conducted with X-ray photoelectron spectroscopy (XPS). Ni3Al(110) was oxidized (10-6 Torr O2, 800K) followed by annealing (1100K). The data indicate that the annealed oxide film is composed of NiO, Al2O3 and an intermediate phase denoted here as "AlOx". Upon exposure of the oxide film at ambient temperature to increasing water vapor pressure (10-6 - 5 Torr), a shift in both the O(1s) and Al(2p)oxide peak maxima to lower binding energies is observed. In contrast, exposure of Al2O3/Al(polycrystalline) to water vapor under the same conditions results in a high binding energy shoulder in the O(1s) spectra which indicates hydroxylation. Spectral decomposition provides further insight into the difference in reactivity between the two oxide films. The corresponding trends of the O(1s)/Ni0(2p3/2) and Al(2p)/Ni0(2p3/2) spectral intensity ratios suggest conformal changes of the oxide film on Ni3Al(110). The growth behavior of sputter deposited Pt at ~300K on Ta silicate and SiO2 ultrathin films formed on Si(100) was investigated. The XPS data show that Pt deposition results in uniform growth or "wetting" on Ta silicate and 2-D cluster growth on SiO2. Electroless Cu deposition on ~11 monolayers (ML) Pt/Ta silicate film results in an adherent Cu film which passed the Scotch tape test. In contrast, electroless Cu deposition on ~11ML Pt/SiO2 results in a non-adherent Cu film due to weak Pt/SiO2 interaction.
Date: May 2004
Creator: Garza, Michelle

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Description: Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This study proposes modified amorphous silicon carbon hydrogen (a-Si:C:H) films as possible diffusion barriers and replacements for SiO2 between metal levels, interlevel dielectric (ILD), or between metal lines (IMD), based upon the diffusion inhibition of previous a-Si:C:H species expected lower dielectric constants, acceptable thermal conductivity. Vinyltrimethylsilane (VTMS) precursor was condensed on a titanium substrate at 90 K and bombarded with electron beams to induce crosslinking and form polymerized a-Si:C:H films. Modifications of the films with hydroxyl and nitrogen was accomplished by dosing the condensed VTMS with water or ammonia before electron bombardment producing a-Si:C:H/OH and a-Si:C:H/N and a-Si:C:H/OH/N polymerized films in expectation of developing films that would inhibit copper diffusion and promote Cu adherence, wetting, on the film surface. X-ray Photoelectron Spectroscopy was used to characterize Cu metallization of these a-Si:C:H films. XPS revealed substantial Cu wetting of a-Si:C:H/OH and a-Si:C:H/OH/N films and some wetting of a-Si:C:H/N films, and similar Cu diffusion inhibition to 800 K by all of the a-:S:C:H films. These findings suggest the possible use of a-Si:C:H films as ILD and IMD materials, with the possibility of further tailoring a-Si:C:H films to meet future device requirements.
Date: May 2004
Creator: Pritchett, Merry

Investigation of Structure and Properties of Low Temperature Deposited Diamond-Like Carbon Films

Description: Electrodeposition is a novel method for fabrication of diamond-like carbon (DLC) films on metal substrates. In this work, DLC was electrochemically deposited on different substrates based on an anodic oxidation cyclization of acetylene in liquid ammonia. Successfully anodic deposition was carried out for DLC onto nickel substrate at temperatures below -40°C. Comparative studies were performed on a series of different carbon sources (acetylene, sodium acetylide, and a mixture of acetylene and sodium acetylide). The films were characterized using a variety of methods including Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), XPS valence band spectra, and/or scanning electron microscopy (SEM). Raman spectroscopy is used as a bench mark technique to verify the presence of deposited DLC films, to access the films homogeneities, and to provide the ratio of the different carbon phases, mainly disordered graphite (D) and graphite (G) phases in the films. A combination of the Raman with FTIR and valence band spectra analysis allowed the distinction between hydrogenated DLC and unhydrogenated DLC films. Three different kinds of DLC [(1) hydrogenated DLC (a-C:H); (2) tetrahedral hydrogenated DLC (ta-C:H); and (3) graphitic-like DLC] were deposited depending upon the deposition conditions and substrates. Temperature and current density are the most important parameters to govern the quality of the deposited films, where adding of acetylide into the electrolyte led to films with a higher degree of graphitic phases. The proposed mechanism for acetylene anodic oxidation does not involve direct electron transfer but electrochemical cyclization of acetylene radical cations and hydrogen abstraction at the termination steps. Sodium acetylide, however, dissociates to an acetylenic ion, C2H-, in liquid ammonia. The electrochemistry heterogeneity also leads to island and two-dimensional (2D) nucleation growth of DLC films. Different bond formations of metal to carbon and different chemisorptions of acetylene on metal play important roles ...
Date: August 2004
Creator: Pingsuthiwong, Charoendee