UNT Libraries - 11 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Description: Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low ...
Date: May 2016
Creator: Joshi, Shital

Analysis and Performance of a Cyber-Human System and Protocols for Geographically Separated Collaborators

Description: This dissertation provides an innovative mechanism to collaborate two geographically separated people on a physical task and a novel method to measure Complexity Index (CI) and calculate Minimal Complexity Index (MCI) of a collaboration protocol. The protocol is represented as a structure, and the information content of it is measured in bits to understand the complex nature of the protocol. Using the complexity metrics, one can analyze the performance of a collaborative system and a collaboration protocol. Security and privacy of the consumers are vital while seeking remote help; this dissertation also provides a novel authorization framework for dynamic access control of resources on an input-constrained appliance used for completing the physical task. Using the innovative Collaborative Appliance for REmote-help (CARE) and with the support of a remotely located expert, fifty-nine subjects with minimal or no prior mechanical knowledge are able to elevate a car for replacing a tire in an average time of six minutes and 53 seconds and with an average protocol complexity of 171.6 bits. Moreover, thirty subjects with minimal or no prior plumbing knowledge are able to change the cartridge of a faucet in an average time of ten minutes and with an average protocol complexity of 250.6 bits. Our experiments and results show that one can use the developed mechanism and methods for expanding the protocols for a variety of home, vehicle, and appliance repairs and installations.
Date: December 2017
Creator: Jonnada, Srikanth

Detection and Classification of Heart Sounds Using a Heart-Mobile Interface

Description: An early detection of heart disease can save lives, caution individuals and also help to determine the type of treatment to be given to the patients. The first test of diagnosing a heart disease is through auscultation - listening to the heart sounds. The interpretation of heart sounds is subjective and requires a professional skill to identify the abnormalities in these sounds. A medical practitioner uses a stethoscope to perform an initial screening by listening for irregular sounds from the patient's chest. Later, echocardiography and electrocardiography tests are taken for further diagnosis. However, these tests are expensive and require specialized technicians to operate. A simple and economical way is vital for monitoring in homecare or rural hospitals and urban clinics. This dissertation is focused on developing a patient-centered device for initial screening of the heart sounds that is both low cost and can be used by the users on themselves, and later share the readings with the healthcare providers. An innovative mobile health service platform is created for analyzing and classifying heart sounds. Certain properties of heart sounds have to be evaluated to identify the irregularities such as the number of heart beats and gallops, intensity, frequency, and duration. Since heart sounds are generated in low frequencies, human ears tend to miss certain sounds as the high frequency sounds mask the lower ones. Therefore, this dissertation provides a solution to process the heart sounds using several signal processing techniques, identifies the features in the heart sounds and finally classifies them. This dissertation enables remote patient monitoring through the integration of advanced wireless communications and a customized low-cost stethoscope. It also permits remote management of patients' cardiac status while maximizing patient mobility. The smartphone application facilities recording, processing, visualizing, listening, and classifying heart sounds. The application also generates an electronic medical ...
Date: December 2016
Creator: Thiyagaraja, Shanti

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting multimodal sentiment analysis system is shown to significantly outperform the use of language alone. Using this system, we were able to predict the sentiment expressed in video reviews and also the sentiment experienced by viewers while exposed to emotionally loaded content. Second, the thesis provides evidence of the portability of the developed strategies to other affect recognition problems. We provided support for this by studying the deception detection problem. Third, this thesis contributes several multimodal datasets that will enable further research in sentiment and deception detection.
Date: December 2014
Creator: Pérez-Rosas, Verónica

Hybrid Approaches in Test Suite Prioritization

Description: The rapid advancement of web and mobile application technologies has recently posed numerous challenges to the Software Engineering community, including how to cost-effectively test applications that have complex event spaces. Many software testing techniques attempt to cost-effectively improve the quality of such software. This dissertation primarily focuses on that of hybrid test suite prioritization. The techniques utilize two or more criteria to perform test suite prioritization as it is often insufficient to use only a single criterion. The dissertation consists of the following contributions: (1) a weighted test suite prioritization technique that employs the distance between criteria as a weighting factor, (2) a coarse-to-fine grained test suite prioritization technique that uses a multilevel approach to increase the granularity of the criteria at each subsequent iteration, (3) the Caret-HM tool for Android user session-based testing that allows testers to record, replay, and create heat maps from user interactions with Android applications via a web browser, and (4) Android user session-based test suite prioritization techniques that utilize heuristics developed from user sessions created by Caret-HM. Each of the chapters empirically evaluate the respective techniques. The proposed techniques generally show improved or equally good performance when compared to the baselines, depending on an application under test. Further, this dissertation provides guidance to testers as it relates to the use of the proposed hybrid techniques.
Date: May 2018
Creator: Nurmuradov, Dmitriy

Multi-Modal Insider Threat Detection and Prevention based on Users' Behaviors

Description: Insider threat is one of the greatest concerns for information security that could cause more significant financial losses and damages than any other attack. However, implementing an efficient detection system is a very challenging task. It has long been recognized that solutions to insider threats are mainly user-centric and several psychological and psychosocial models have been proposed. A user's psychophysiological behavior measures can provide an excellent source of information for detecting user's malicious behaviors and mitigating insider threats. In this dissertation, we propose a multi-modal framework based on the user's psychophysiological measures and computer-based behaviors to distinguish between a user's behaviors during regular activities versus malicious activities. We utilize several psychophysiological measures such as electroencephalogram (EEG), electrocardiogram (ECG), and eye movement and pupil behaviors along with the computer-based behaviors such as the mouse movement dynamics, and keystrokes dynamics to build our framework for detecting malicious insiders. We conduct human subject experiments to capture the psychophysiological measures and the computer-based behaviors for a group of participants while performing several computer-based activities in different scenarios. We analyze the behavioral measures, extract useful features, and evaluate their capability in detecting insider threats. We investigate each measure separately, then we use data fusion techniques to build two modules and a comprehensive multi-modal framework. The first module combines the synchronized EEG and ECG psychophysiological measures, and the second module combines the eye movement and pupil behaviors with the computer-based behaviors to detect the malicious insiders. The multi-modal framework utilizes all the measures and behaviors in one model to achieve better detection accuracy. Our findings demonstrate that psychophysiological measures can reveal valuable knowledge about a user's malicious intent and can be used as an effective indicator in designing insider threat monitoring and detection frameworks. Our work lays out the necessary foundation to establish a new generation ...
Date: August 2018
Creator: Hashem, Yassir

New Frameworks for Secure Image Communication in the Internet of Things (IoT)

Description: The continuous expansion of technology, broadband connectivity and the wide range of new devices in the IoT cause serious concerns regarding privacy and security. In addition, in the IoT a key challenge is the storage and management of massive data streams. For example, there is always the demand for acceptable size with the highest quality possible for images to meet the rapidly increasing number of multimedia applications. The effort in this dissertation contributes to the resolution of concerns related to the security and compression functions in image communications in the Internet of Thing (IoT), due to the fast of evolution of IoT. This dissertation proposes frameworks for a secure digital camera in the IoT. The objectives of this dissertation are twofold. On the one hand, the proposed framework architecture offers a double-layer of protection: encryption and watermarking that will address all issues related to security, privacy, and digital rights management (DRM) by applying a hardware architecture of the state-of-the-art image compression technique Better Portable Graphics (BPG), which achieves high compression ratio with small size. On the other hand, the proposed framework of SBPG is integrated with the Digital Camera. Thus, the proposed framework of SBPG integrated with SDC is suitable for high performance imaging in the IoT, such as Intelligent Traffic Surveillance (ITS) and Telemedicine. Due to power consumption, which has become a major concern in any portable application, a low-power design of SBPG is proposed to achieve an energy- efficient SBPG design. As the visual quality of the watermarked and compressed images improves with larger values of PSNR, the results show that the proposed SBPG substantially increases the quality of the watermarked compressed images. Higher value of PSNR also shows how robust the algorithm is to different types of attack. From the results obtained for the energy- efficient SBPG ...
Date: August 2016
Creator: Albalawi, Umar Abdalah S

Radio Resource Control Approaches for LTE-Advanced Femtocell Networks

Description: The architecture of mobile networks has dramatically evolved in order to fulfill the growing demands on wireless services and data. The radio resources, which are used by the current mobile networks, are limited while the users demands are substantially increasing. In the future, tremendous Internet applications are expected to be served by mobile networks. Therefore, increasing the capacity of mobile networks has become a vital issue. Heterogeneous networks (HetNets) have been considered as a promising paradigm for future mobile networks. Accordingly, the concept of small cell has been introduced in order to increase the capacity of the mobile networks. A femtocell network is a kind of small cell networks. Femtocells are deployed within macrocells coverage. Femtocells cover small areas and operate with low transmission power while providing high capacity. Also, UEs can be offloaded from macrocells to femtocells. Thus, the capacity can be increased. However, this will introduce different technical challenges. The interference has become one of the key challenges for deploying femtocells within a certain macrocells coverage. Undesirable impact of the interference can degrade the performance of the mobile networks. Therefore, radio resource management mechanisms are needed in order to address key challenges of deploying femtocells. The objective of this work is to introduce radio resource control approaches, which are used to increase mobile networks' capacity and alleviate undesirable impact of the interference. In addition, proposed radio resource control approaches ensure the coexistence between macrocell and femtocells based on LTE-Advanced environment. Firstly, a novel mechanism is proposed in order to address the interference challenge. The proposed approach mitigates the impact of interference based on controlling radio sub-channels' assignment and dynamically adjusting the transmission power. Secondly, a dynamic strategy is proposed for the FFR mechanism. In the FFR mechanism, the whole spectrum is divided into four fixed sub-channels and each ...
Date: August 2018
Creator: Alotaibi, Sultan Radhi

Reading with Robots: A Platform to Promote Cognitive Exercise through Identification and Discussion of Creative Metaphor in Books

Description: Maintaining cognitive health is often a pressing concern for aging adults, and given the world's shifting age demographics, it is impractical to assume that older adults will be able to rely on individualized human support for doing so. Recently, interest has turned toward technology as an alternative. Companion robots offer an attractive vehicle for facilitating cognitive exercise, but the language technologies guiding their interactions are still nascent; in elder-focused human-robot systems proposed to date, interactions have been limited to motion or buttons and canned speech. The incapacity of these systems to autonomously participate in conversational discourse limits their ability to engage users at a cognitively meaningful level. I addressed this limitation by developing a platform for human-robot book discussions, designed to promote cognitive exercise by encouraging users to consider the authors' underlying intentions in employing creative metaphors. The choice of book discussions as the backdrop for these conversations has an empirical basis in neuro- and social science research that has found that reading often, even in late adulthood, has been correlated with a decreased likelihood to exhibit symptoms of cognitive decline. The more targeted focus on novel metaphors within those conversations stems from prior work showing that processing novel metaphors is a cognitively challenging task, for young adults and even more so in older adults with and without dementia. A central contribution arising from the work was the creation of the first computational method for modelling metaphor novelty in word pairs. I show that the method outperforms baseline strategies as well as a standard metaphor detection approach, and additionally discover that incorporating a sentence-based classifier as a preliminary filtering step when applying the model to new books results in a better final set of scored word pairs. I trained and evaluated my methods using new, large corpora from two sources, ...
Date: August 2018
Creator: Parde, Natalie

Sensing and Decoding Brain States for Predicting and Enhancing Human Behavior, Health, and Security

Description: The human brain acts as an intelligent sensor by helping in effective signal communication and execution of logical functions and instructions, thus, coordinating all functions of the human body. More importantly, it shows the potential to combine prior knowledge with adaptive learning, thus ensuring constant improvement. These qualities help the brain to interact efficiently with both, the body (brain-body) as well as the environment (brain-environment). This dissertation attempts to apply the brain-body-environment interactions (BBEI) to elevate human existence and enhance our day-to-day experiences. For instance, when one stepped out of the house in the past, one had to carry keys (for unlocking), money (for purchasing), and a phone (for communication). With the advent of smartphones, this scenario changed completely and today, it is often enough to carry just one's smartphone because all the above activities can be performed with a single device. In the future, with advanced research and progress in BBEI interactions, one will be able to perform many activities by dictating it in one's mind without any physical involvement. This dissertation aims to shift the paradigm of existing brain-computer-interfaces from just ‘control' to ‘monitor, control, enhance, and restore' in three main areas - healthcare, transportation safety, and cryptography. In healthcare, measures were developed for understanding brain-body interactions by correlating cerebral autoregulation with brain signals. The variation in estimated blood flow of brain (obtained through EEG) was detected with evoked change in blood pressure, thus, enabling EEG metrics to be used as a first hand screening tool to check impaired cerebral autoregulation. To enhance road safety, distracted drivers' behavior in various multitasking scenarios while driving was identified by significant changes in the time-frequency spectrum of the EEG signals. A distraction metric was calculated to rank the severity of a distraction task that can be used as an intuitive measure ...
Date: August 2016
Creator: Bajwa, Garima

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Date: May 2015
Creator: Arigong, Bayaner