UNT Libraries - 80 Matching Results

Search Results

The Effect of Curcumin Supplementation on Physical and Biological Indices of Delayed Onset Muscle Soreness and Inflammation Following Muscle Injury

Description: In this project, the effects of dietary polyphenols on exercise-induced muscle damage and vascular health are examined. Dietary polyphenols exert well-known anti-inflammatory effects; however, how these effects are realized with respect to vascular health and EIMD is relatively unknown. I begin by reviewing the available literature surrounding the impact of three dietary polyphenols (curcumin, catechins, and quercetin) on inflammation associated with EIMD. It is well established that their primary means of anti-inflammation is through alterations of NF-κB and AP-1 transcription activities. Given this, their inclusion into training strategies seems reasonable. Consistent evidence is presented making a case for the anti-inflammatory effects of dietary polyphenols following EIMD. I follow this review up by completing an in-depth study on the consumption of curcumin prior to EIMD. I found curcumin (1000 mg/day) can reduce subjective soreness and decrease inflammation compared to placebo controls. To further understand the effects of dietary polyphenols on health, I investigate the effects of a four-week supplementation period of cocoa (catechins) on vascular. I concluded that atherogenic risk in obese women is reduced after consumption of cocoa. In addition to these experimental projects, I developed two novel methods that can be used to investigate vascular health (EMP concentration) and intracellular protein and mRNA production using flow cytometry.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Venable, Adam Steven

The Effect of Menthol on Nicotine Metabolism: a Cross Species Evaluation

Description: The effect of menthol on nicotine metabolism was examined in liver S9 fractions of four different species and in the in vivo mouse model. The purpose of this study was to investigate three parameters: (1) biotransformation of nicotine to cotinine in various species (human, mouse, rat and trout) using in vitro methods; (2) to determine if the addition of menthol with nicotine altered biotransformation of nicotine to cotinine; (3) and to assess similar parameters in an in vivo mouse model. The major findings of this study include: (1) mice appear to metabolize nicotine, over time, in a manner similar to humans; (2) menthol decreased cotinine production, over time, after a single dose in mice; and (3) menthol increased cotinine production, over time, after repeated doses, in mice.
Date: December 2013
Creator: Pace, Wendy Lee

The Effect of Post-exercise Ethanol Consumption on the Acute Hormonal Response to Heavy Resistance Exercise in Women

Description: The purpose of this study was to examine the hormonal response to acute ethanol ingestion following a bout of heavy resistance exercise in women. Eight resistance trained women completed two identical acute heavy resistance exercise tasks (AHRET). From 10-20 minutes post-AHRET, participants consumed either a grain ethanol or a placebo beverage. Blood was collected before (PRE) and immediately after the AHRET (IP) and then every 20 minutes for five hours. Blood collected after beverage ingestion was pooled into 3 batches (phases: 20-40 minutes, 60-120 minutes, and 140-300 minutes post-exercise) and analyzed for serum total testosterone (TT), free testosterone (FT), insulin-like growth factor-I (IGF-I), human growth hormone (GH), cortisol (COR), and estradiol (E2) concentrations. Circulating concentrations of TT were significantly greater at P20-40 than at PRE, P60-120, and P140-300. Circulating concentrations of FT were significantly greater at P20-40 than at all other times. Circulating concentrations of GH were significantly greater at IP than at PRE, P60-120, and P140-300. Circulating concentrations of COR were significantly greater at P20-40 than at all other times. Additionally, COR concentrations at P140-300 were significantly lower than at all other times. Circulating concentrations of IGF-1 were significantly greater at P20-40 than at P60-120 and P140-300. Circulating concentrations of E2 were significantly greater at P20-40 than at all other times. In summary, the present study demonstrated an acute modulation of the neuroendocrine milieu following a heavy resistance exercise bout in women. Ethanol ingestion appeared to have no significant effect on the characteristics of acute hormonal augmentation in TT, FT, GH, COR, IGF-1, or E2.
Date: December 2015
Creator: Budnar, Jr., Ronald G.

The Effectiveness of Hybrid Problem-Based Learning versus Manual-Based Learning in the Microbiology Laboratory

Description: Promising results from the use of problem-based learning (PBL) as a teaching method in medical programs have encouraged many institutions to incorporate PBL into their curricula. This study investigates how applying hybrid-PBL (H-PBL) in a microbiology laboratory impacts students' higher-order thinking as compared to applying a lecture-based pedagogy. The experimental design compared the learning outcomes of two groups of students: the control group and the H-PBL group, for whom PBL cases comprised 30% of the curriculum. Both groups were taught basic skills for the microbiology lab by the same instructor. Using the traditional teaching style for the control group, the instructor offered each student what they needed for their experiments. The H-PBL group practiced experimental design, data analysis, theory proposal, and created research questions by using six study cases that were closely linked to the area of study. The outcome was measured using a pre- and post- assessment consisting of 24 questions that was designed by following Bloom's taxonomy of learning levels. A one-way ANOVA was used to analyze the data. The results showed that for the first three levels of Bloom's taxonomy— knowledge, comprehension, and application—there were no statistically significant differences between the H-PBL and control group gain scores as determined by a one-way ANOVA. For the knowledge level, f (1, 78) = .232, and p = .632; for the comprehension level, f (1, 78) = .004, and p = .951; and for the application level f (1, 78) =. 028, and p =.863. On the other hand, the gain scores for the three higher levels—analysis, evaluation, and creativity—improved for the H-PBL group. The analysis level showed statistically significant differences, with f (1, 78) = 4.012, and p = .049. Also, there were statistically significant differences in students' performance at the evaluation level, with f (1, 78) = 11.495, ...
Date: May 2017
Creator: Alharbi, Najwa

Effects of Airway Pressure, Hypercapnia, and Hypoxia on Pulmonary Vagal Afferents in the Alligator (Alligator Misssissippiensis)

Description: The American alligator (Alligator mississippiensis) is an aquatic diving reptile with a periodic breathing pattern. Previous work has identified pulmonary stretch receptors (PSR), both rapidly- and slowly-adapting, and intrapulmonary chemoreceptors (IPCs) that modulate breathing patterns in alligators. The purpose of the present study was to identify the effects of prolonged lung inflation and deflation (simulated dives) on PSR and/or IPC firing characteristics in the alligator. The effects of airway pressure, hypercapnia, and hypoxia on dynamic and static responses of pulmonary stretch receptors (PSR) were studied in juvenile alligators (mean mass = 246 g) at 24°C. Receptor activity appeared to be a mixture of slowly-adapting PSRs (SARs) and rapidly-adapting PSRs (RARs) with varying thresholds and degrees of adaptation, but no CO2 sensitivity. Dives were simulated in order to character receptor activity before, during, and after prolonged periods of lung inflation and deflation. Some stretch receptors showed a change in dynamic response, exhibiting inhibition for several breaths after 1 min of lung inflation, but were unaffected by prolonged deflation. For SAR, the post-dive inhibition was inhibited by CO2 and hypoxia alone. These airway stretch receptors may be involved in recovery of breathing patterns and lung volume during pre- and post-diving behavior and apneic periods in diving reptiles. These results suggest that inhibition of PSR firing following prolonged inflation may promote post-dive ventilation in alligators.
Date: December 2013
Creator: Marschand, Rachel E.

Effects of Brain Brain Injury on Primary Cilia of Glial Cells and Pericytes

Description: Glial cells maintain homeostasis that is essential to neuronal function. Injury to the nervous system leads to the activation and proliferation of glial cells and pericytes, which helps to wall off the damaged region and restore homeostatic conditions. Sonic hedgehog is a mitogen which is implicated in injury-induced proliferation of glial cells and pericytes. The mitogenic effects of sonic hedgehog require primary cilia, but the few reports on glial or pericyte primary cilia do not agree about their abundance and did not address effects of injury on these cilia. Primary cilia are microtubule-based organelles that arise from the centrosome and are retracted before cells divide. Depending on cell type, proteins concentrated in cilia can transduce several mitotic, chemosensory, or mechanosensory stimuli. The present study investigated effects of stab wound injury on the incidence and length of glial and pericyte primary cilia in the area adjacent to the injury core. Astrocytes, polydendrocytes and pericytes were classified by immunohistochemistry based on cell-type markers. In normal adult mice, Arl13b immunoreactive primary cilia were present in a majority of each cell type examined: astrocytes, 98±2%; polydendrocytes, 87±6%; and pericytes, 79±13% (mean ± SEM). Three days post-injury, cilium incidence decreased by 24% in astrocytes (p< 0.008) and 41% in polydendrocytes (p< 0.002), but there was no significant effect in pericytes. Polydendrocytes labeled with the cell cycle marker Ki67 were less likely to have cilia compared to resting, Ki67- polydendrocytes. Considering post-injury rates of proliferation for astrocytes and polydendrocytes, it appears that resorption of cilia due to cell cycle entry may account for much of the loss of cilia in polydendrocytes but was not sufficient to account for the loss of cilia in astrocytes. Under normal conditions, astrocytes rarely divide, and they maintain non-overlapping territories. However, three days after injury, there was a 7-fold increase in ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Coronel, Marco Vinicio

Effects of CFT Legumine™ Rotenone on Macroinvertebrates in Four Drainages of Montana and New Mexico

Description: Rotenone is considered essential in the restoration of native fish populations; however, the technique is contentious and criticized, specifically concerning impacts to invertebrates. Knowledge of effects to non-target organisms is important for the management and conservation of fish populations. This thesis has two general objectives: (1) demonstrate the influence CFT Legumine™ rotenone has on benthic macroinvertebrates for restoration projects in Montana and New Mexico and (2) evaluate the immediate response by means of invertebrate drift. Chapters 2 and 4 incorporate results from four different restoration projects that examine benthic macroinvertebrate response. Results indicate treatment effects are minimal for Specimen and Cherry Creek projects in Montana. New Mexico projects, Comanche and Costilla Creek suggest a greater influence. Potassium permanganate used to neutralize rotenone, influenced communities in three of the four projects. Regardless, invertebrates in all four projects recovered one-year after treatment. Chapter 3 examines macroinvertebrate drift during rotenone treatment. Results suggest a delayed response compared to previous literature. Rotenone appears to have the greatest immediate influence on the early life stages of Ephemeroptera and Plecoptera. To reduce impacts of rotenone to invertebrates, managers should apply CFT Legumine and use the minimal dosage and duration to complete the projects goal of removing non-indigenous fish species.
Date: August 2011
Creator: Skorupski, Joseph A., Jr.

The Effects of Inbreeding on Fitness Traits in the Critically Endangered Attwater’s Prairie-chicken

Description: The goals of captive breeding programs for endangered species include preserving genetic diversity and avoiding inbreeding. Typically this is accomplished by minimizing population mean kinship; however, this approach becomes less effective when errors in the pedigree exist and may result in inbreeding depression, or reduced survival. Here, both pedigree- and DNA-based methods were used to assess inbreeding depression in the critically endangered Attwater’s prairie-chicken (Tympanuchus cupido attwateri). Less variation in the pedigree-based inbreeding coefficients and parental relatedness values were observed compared to DNA-based measures suggesting that errors exist in the pedigree. Further, chicks identified with high parental DNA-based relatedness exhibited decreased survival at both 14- and 50-days post-hatch. A similar pattern was observed in later life stages (> 50 days post-hatch) with birds released to the wild; however, the pattern varied depending on the time post-release. While DNA-based inbreeding coefficient was positively correlated with mortality to one month post-release, an opposite pattern was observed at nine months suggesting purging of deleterious alleles. I also investigated whether immunocompetence, or the ability to produce a normal immune response, was correlated with survival; however, no significant correlation was observed suggesting that inbreeding was a more important factor influencing survival. Pairing individuals for breeding by minimizing DNA-based parental relatedness values resulted in a significant increase in chick survival. This study highlights the importance of using DNA-based methods to avoid inbreeding depression when errors exist in the pedigree.
Date: August 2014
Creator: Hammerly, Susan C.

Effects of Peripheral Nerve Injury on the Cells of the Dorsal Root Ganglion: a Role for Primary Cilia

Description: Primary cilia are ubiquitous sensory organelles found on most cell types including cells of the dorsal root ganglia (DRG). The DRG are groups of peripheral neurons that relay sensory information from the periphery to the CNS. Other cell types in the DRG include a type of glial cell, the satellite glial cells (SGCs). The SGCs surround the DRG neurons and, with the neurons, form functional sensory units. Currently are no reports describing the numbers of DRG cells that have cilia. We found that 26% of the SGCs had primary cilia. The incidence of cilia on neurons varied with neuron size, a property that roughly correlates with physiological characteristics. We found that 29% of the small, 16% of the medium and 5% of the large neurons had primary cilia. Primary cilia have been shown to have a role in cell proliferation in a variety of cell types. In some of the cells the cilia mediate the proliferative effects of Sonic hedgehog (Shh). In the CNS, Shh signaling through primary cilia affects proliferation during development as well as following injury, but no studies have looked at this function in the PNS. The SGCs and neurons of the DRG undergo complex changes following peripheral nerve injury such as axotomy. One marked change seen after axotomy is SGC proliferation and at later stages, neuronal death. We found that following axotomy there is a significant increase in the percentage of SGCs with primary cilia. We also found a significant increase in the percentage of medium-sized neurons with primary cilia. In other experiments we tested the idea that Shh plays a role in SGC proliferation. When Shh signaling was blocked following axotomy we found decreased proliferation of SGCs. This is the first report of a change in the percentage of cells with cilia following injury in ...
Date: December 2012
Creator: Smith, Sarah K.

Effects of Sertraline Exposure on Fathead Minnow (Pimephales promelas) Steroidogenesis

Description: Sertraline is a selective serotonin reuptake inhibitor (SSRI) that is widely used for the treatment of depression and anxiety. Due to the abundant therapeutic use of sertraline, low levels have been detected in municipal wastewater effluents suggesting that aquatic organisms may be exposed. The purpose of this study was to evaluate the steroidogenic effects of sertraline on larval (FHM) and adult female fathead minnows (FFHM), Pimephales promelas. Larval FHM were exposed to 0.1, 1, and 10 µg/L sertraline for 28 days and analyzed via RT-qPCR for differential expression of 11β-Hydroxysteroid dehydrogenase (11β-HSD), 20β-Hydroxysteroid dehydrogenase (20β-HSD), aromatase (CYP19), and nuclear thyroid receptor alpha (TRα). FFHM were exposed to 3 or 10 µg/L sertraline for 7 days with the brain and ovary excised at exposure termination. Juvenile FHM exposed to 0.1 μg/L sertraline had a significant upregulation of both 20β-HSD and TRα. FFHM exposed to 10 µg/L sertraline had a significant upregulation of 11β-HSD expression in brain tissue, while no steroidogenic changes were observed in the FFHM ovary. Similarly, in FFHM brain tissue, CYP19 and 20β-HSD expression levels were significantly higher in fish exposed to 10µg/L sertraline compared to control. The significance of these findings with respect to survival, growth and reproduction are currently unknown, but represent future research needs.
Date: December 2014
Creator: Carty, Dennis R.

Endocannabinoid System in a Planarian Model

Description: In this study, the presence and possible function of endocannabinoid ligands in the planarian is investigated. The endocannabinoids ananadamide (AEA) and 2-arachidonoylglycerol (2-AG) and entourage NAE compounds palmitoylethanolamide (PEA), stearoylethanolamide (SEA) and oleoylethanolamide (OEA) were found in Dugesia dorotocephala. Changes in SEA, PEA, and AEA levels were observed over the initial twelve hours of active regeneration. Exogenously applied AEA, 2-AG and their catabolic inhibition effected biphasic changes in locomotor velocity, analogous to those observed in murines. The genome of a close relative, Schmidtea mediterranea, courtesy of the University of Utah S. med genome database, was explored for cannabinoid receptors, none were found. A putative fatty acid amide hydrolase (FAAH) homolog was found in Schmidtea mediterranea.
Date: December 2010
Creator: Mustonen, Katie Lynn

Endocrine Disruption of Levonorgestrel in Early-life Stages of Fathead Minnows, Pimephales Promelas

Description: Pharmaceuticals have routinely been detected in the environment resulting in a growing concern about whether these drugs could elicit effects on aquatic organisms. The concerns are centered on the highly conserved nature of mammalian therapeutic targets in fish. These pharmaceuticals are found at very low levels in the environment, which can result in sub-lethal effects in aquatic organisms. Therefore, 28 d early-life stage studies were conducted on six pharmaceuticals to assess their impacts on survival and growth fathead minnow larvae. Two pharmaceuticals tested, carbamazepine and fenofibrate, resulted in no alterations to survival and growth. However, amiodarone, clozapine, dexamethasone, and levonorgestrel (LNG) reduced survival at concentrations tested with LNG being the most potent at 462 ng/L. Survival was increased with amiodarone and clozapine; however LNG significantly decreased growth at 86 ng/L. Therefore, the most potent pharmaceutical tested was the synthetic progestin LNG with survival and growth impacts at concentrations less than 1 μg/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 d ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, and FSH were significantly down-regulated following 28 d exposure to both 16.3 and 86.9 ng/L LNG. Also, CYP19a expression was significantly down-regulated at 86.9 and 2392 ng/L LNG. Subsequently, a second study examined time periods that may be most sensitive (e.g., windows of sensitivity) for FHM larvae exposed to LNG. Larvae were exposed to a single concentration of LNG (i.e. LOECgrowth of 86.2 ng/L as determined in the 28 d ELS study) for different time periods starting with fertilized egg through 28 dph. Growth and mRNA expression of the four differentially expressed transcripts from the first study were measured. Regardless of the duration of exposure, LNG significantly decreased growth in fathead minnow larvae at day 28. For both 20β-HSD and CYP19a, ...
Date: August 2013
Creator: Overturf, Matthew D.

Environmental Modulation of the Onset of Air-breathing of the Siamese Fighting Fish and the Blue Gourami

Description: This study determined the effect of hypoxia on air-breathing onset and physiological and morphological characters in larvae of the air breathing fishes Trichopodus trichopterus and Betta splendens. Larvae were exposed intermittently (12/12 h daily) to 20, 17, and 14 kPa of PO2 from 1 to 40 days post-fertilization. Survival, onset of air breathing, wet body mass, O2, Pcrit were measured every 5 dpf. Hypoxia advanced by 4 days, and delayed by 9 days, the onset of air breathing in Betta and Trichopodus, respectively. Hypoxia increased larval body length, wet mass, and labyrinth organ respiratory surface of Betta, but did not affect these factors in Trichopodus. Hypoxic exposure increased O2 by 50-100% at each day throughout larval development in Betta, but had no effect on larval Trichopodus. Hypoxia decreased Pcrit in Betta by 37%, but increased Pcrit in Trichopodus by 70%. Larval Betta reared in hypoxia showed a modified heart rate:opercular rate ratio (3:1 to 2:1), but these changes did not occur in Trichopodus. Compared to Betta, the blood of Trichopodus had a higher P50 and much smaller Bohr and Root effects. These interspecific differences are likely due to ecophysiological differences: Betta is a non- obligatory air-breather after 36 dpf with a slow lifestyle reflected in its low metabolism, while Trichopodus is an obligatory air-breather past 32 dpf with an athletic fast lifestyle and accompanying high metabolism.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2015
Creator: Mendez Sanchez, Jose Fernando

Evaluating the Habitat Requirements of the Golden Orb Mussel (Quadrula Aurea) for Conservation Purposes

Description: Many freshwater mussels are imperiled, due to a number of interrelated factors such as habitat alteration, degradation of water quality, and impoundments. The Golden Orb mussel (Quadrula aurea, I. Lea, 1859) is endemic to the state of Texas and is currently a candidate for the endangered species list, as the number of known populations has been declining in recent years. Little is currently known about Q. aurea aside from basic distribution data. This study is focused on evaluating a combination of macro-habitat and micro-habitat variables to determine their influence on the distribution and density of this species. Macro-habitat variables, including dominant land cover, surface geology, and soil erodibility factor, did not have a significant relationship with mussel distributions. The best model of micro-habitat variables that impacts the Q. aurea distributions is comprised of relative substrate stability (RSS) at moderate flows and current velocity at low flows. For all mussel species in this study, current velocity at low flows is the primary variable that influences distribution. Q. aurea are associated with habitats where larger sediment particles (large gravel and cobble) help to stabilize the substrate in areas with higher current velocities. An understanding of the preferred habitats for Q. aurea can be used to help focus conservation efforts and practices.
Date: May 2013
Creator: Hammontree, Sarah

Examination of the Relationship Between Glucuronic Acid and Vascular Damage in Rats

Description: The goal of this experiment was to examine the role of glucuronic acid in the development of vascular damage in the kidneys and retinas of diabetic individuals. Glucuronic acid was provided to rats in their water at various concentrations in order to increase plasma levels of the compound. Kidneys and retinas were excised and compared to control specimens using microscopy to determine the effect of elevated blood glucuronic acid levels on the occurrence of microaneurysms in renal capillary networks. No differences were seen between the treatment and control groups. Further study needs to be conducted to determine a more suitable time frame for this experiment.
Date: May 2013
Creator: Moore, Ryan

Examining the Shade/flood Tolerance Tradeoff Hypothesis in Bottomland Herbs Through Field Study and Experimentation

Description: While there is growing evidence that shade/flood tolerance tradeoffs may be important in distributions of bottomland hardwood trees and indications that they should apply to herbs, no studies have definitively explored this possibility. Four years of field data following historic flooding were supplemented with a greenhouse experiment designed to identify interactions congruent with tradeoffs. Fifteen bottomland species were grown in two levels of water availability and three levels of shade over 10 weeks. Results indicate responses of Fimbristylis vahlii and Ammannia robusta are consistent with tradeoffs. Modification of classical allometric responses to shade by substrate saturation indicates a potential mechanism for the tradeoff in A. robusta. Responses indicating potential for increased susceptibility to physical flooding disturbance are also discussed.
Date: May 2012
Creator: Sloop, Jordan

Exploring the Evolutionary History of North American Prairie Grouse (Genus: Tympanuchus) Using Multi-locus Coalescent Analyses

Description: Conservation biologists are increasingly using phylogenetics as a tool to understand evolutionary relationships and taxonomic classification. The taxonomy of North American prairie grouse (sharp-tailed grouse, T. phasianellus; lesser prairie-chicken, T. pallidicinctus; greater prairie-chicken, T. cupido; including multiple subspecies) has been designated based on physical characteristics, geography, and behavior. However, previous studies have been inconclusive in determining the evolutionary history of prairie grouse based on genetic data. Therefore, additional research investigating the evolutionary history of prairie grouse is warranted. In this study, ten loci (including mitochondrial, autosomal, and Z-linked markers) were sequenced across multiple populations of prairie grouse, and both traditional and coalescent-based phylogenetic analyses were used to address the evolutionary history of this genus. Results from this study indicate that North American prairie grouse diverged in the last 200,000 years, with species-level taxa forming well-supported monophyletic clades in species tree analyses. With these results, managers of the critically endangered Attwater's prairie-chicken (T. c. attwateri) can better evaluate whether outcrossing Attwater's with greater prairie-chickens would be a viable management tool for Attwater's conservation.
Date: May 2013
Creator: Galla, Stephanie J.

Field and Laboratory Fish Tissue Accumulation of Carbamazepine and Amiodarone

Description: The goals of this dissertation work were to assess the bioaccumulation potential of carbamazepine and amiodarone, two widely used ionizable pharmaceutical compounds that possess mid-range and high LogD values, respectively, and to evaluate alternative methods to assess chemical accumulation in bluntnose minnows, catfish, and tilapia. Results indicated that carbamazepine does not appreciably bioaccumulate in fish tissue with BCFk and BAF carbamazepine values < 10. Amiodarone, however, with a log D of 5.87 at pH 7.4, accumulated in fish tissues with kinetic BCF values <2,400. Collectively, the data suggest that full and abbreviated laboratory-derived BCFs, BCFMs derived from S9 loss-of-parent assays, as well as field BAF values are similar for each of the two drugs. In summary, the results from this dissertation indicated: 1) The reduced design BCF test is a good estimate for the traditional OECD 305 test. 2) In vitro S9 metabolism assays provide comparable BCF estimates to the OECD 305 test. 3) Metabolism may play a large role in the accumulation of drugs in fish. 4) Reduced BCF tests and in vitro assays are cost effective and can reduce vertebrate testing.
Date: December 2013
Creator: García Martínez, Santos Noé

Functional Neural Toxicity and Endocrine Responses in Mice Following Naphthalene Exposure

Description: Polycyclic aromatic hydrocarbons (PAHs) are a well studied and diverse class of environmental toxicants. PAHs act via the aryl hydrocarbon receptor (AhR), and studies have suggested that PAHs may elicit neurological and estrogenic effects. Doses of PAHs between 50 to 150 ppm may elicit neurotoxicity in rodent models. The present study investigated the effects of naphthalene on in vivo steroidogenesis in Swiss Webster male mice, and in vitro neural function of Balb-C/ICR mice frontal cortex neurons. These data suggest that naphthalene may not elicit steroidogenic effects at concentrations ranging from 0.2 to 25 mg/kg/day, following a 7 day subcutaneous dosing regime. In addition, naphthalene may cause functional toxicity of frontal cortex neurons at concentrations of 32 to 160 ppm naphthalene.
Date: August 2010
Creator: Colbert, Crystal

Genetic Interest Assessment

Description: Genetics is becoming increasingly integrated into peoples' lives. Different measures have been taken to try and better genetics education. This thesis examined undergraduate students at the University of North Texas not majoring in the life sciences interest in genetic concepts through the means of a Likert style survey. ANOVA analysis showed there was variation amongst the interest level in different genetic concepts. In addition age and lecture were also analyzed as contributing factors to students' interest. Both age and lecture were evaluated to see if they contributed to the interest of students in genetic concepts and neither showed statistical significance. The Genetic Interest Assessment (GIA) serves to help mediate the gap between genetic curriculum and students' interest.
Date: May 2013
Creator: Doughney, Erin

Glucose and Altered Ceramide Biosynthesis Impact the Transcriptome and the Lipidome of Caenorhabditis elegans

Description: The worldwide rise of diabetes and obesity has spurred research investigating the molecular mechanisms that mediate the deleterious effects associated with these diseases. Individuals with diabetes and/or obesity are at increased risk from a variety of health consequences, including heart attack, stroke and peripheral vascular disease; all of these complications have oxygen deprivation as the central component of their pathology. The nematode Caenorhabditis elegans has been established as a model system for understanding the genetic and molecular regulation of oxygen deprivation response, and in recent years methods have been developed to study the effects of excess glucose and altered lipid homeostasis. Using C. elegans, I investigated transcriptomic profiles of wild-type and hyl-2(tm2031) ( a ceramide biosynthesis mutant) animals fed a standard or a glucose supplemented diet. I then completed a pilot RNAi screen of differentially regulated genes and found that genes involved in the endobiotic detoxification pathway (ugt-63 and cyp-25A1) modulate anoxia response. I then used a lipidomic approach to determine whether glucose feeding or mutations in the ceramide biosynthesis pathway or the insulin-like signaling pathway impact lipid profiles. I found that gluocose alters the lipid profile of daf-2(e1370) (an insulin-like receptor mutant) animals. These studies indicate that a transcriptomic approach can be used to discover novel pathways involved in oxygen deprivation response and further validate C. elegans as a model for understanding diabetes and obesity.
Date: August 2016
Creator: Ladage, Mary Lee

Glucose Induces Sensitivity to Oxygen Deprivation and Alters Gene Expression in Caenorhabditis Elegans

Description: An organisms’ diet represents an exogenous influence that often yields colossal effects on long-term health and disease risk. The overconsumption of dietary sugars for example, has contributed to significant increases in obesity and type-2 diabetes; health issues that are costly both economically and in terms of human life. Individuals who are obese or are type-2 diabetic often have compromised oxygen delivery and an increased vulnerability to oxygen-deprivation related complications, such as ischemic strokes, peripheral arterial disease and myocardial infarction. Thus, it is of interest to identify the molecular changes glucose supplementation or hyperglycemia can induce, which ultimately compromise oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, I determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide biosynthesis and antioxidant activity, modulates anoxia survival. Additionally, a glucose-supplemented diet induces lipid accumulation. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified are homologous to human genes that are differentially regulated in response to metabolic diseases, suggesting that there may be conserved gene expression responses between C. elegans supplemented with glucose and a diabetic and/or obese state observed in humans. These findings support the utility of C. elegans to model specific aspects of the T2D disease process (e.g., glucose-induced sensitivity to oxygen deprivation) and identify potentially novel regulators of common complications seen in hyperglycemic and T2D patients (e.g., macrovascular complications).
Date: August 2015
Creator: Garcia, Anastacia M.

A High-fat Meal Alters Post-prandial mRNA Expression of SIRT1, SIRT4, and SIRT6

Description: Sirtuins (SIRT) regulate the transcription of various genes involved in the development of diet-induced obesity and chronic disease; however, it is unknown how they change acutely following a high-fat meal. The purpose of this study was to determine the effect of a high-fat meal (65% kcals/d; 85% fat recommendation), on SIRT1-7 mRNA expression in blood leukocytes at 1, 3, and 5-h post-prandial. Men and women (N=24) reported to the lab following an overnight fast (>12H). Total RNA was isolated and reverse transcribed prior to using a Taqman qPCR technique with 18S rRNA as a normalizer to determine SIRT1-7 mRNA expression. An additional aliquot of serum was used to measure triglycerides. Data was analyzed using a RM ANOVA with P<0.05. Triglycerides (P<0.001; 124%) peaked at 3-h. SIRT 1 (P=0.004; 70%), and SIRT 6 (P=0.017; 53%) decreased expression at 3-h. SIRT4 (P=0.024) peaked at 5H relative to baseline (70%) and 3-h (68%). To our knowledge, this is the first study to report that consumption of a high-fat meal transiently alters SIRT mRNA expression consistent in a pattern that mirrors changes in serum triglycerides. Decrease in expression of SIRT1 and SIRT6 combined with an increased SIRT4 would be consistent with an increase in metabolic disease risk if maintained on a chronic basis.
Date: December 2015
Creator: Best Sampson, Jill Nicole

Hypoxia and the Development of Endothermic Capacity in Chickens (Gallus Gallus)

Description: Adult chickens employ endothermy – internal generation of heat that maintains a constant body temperature (Tb). Prior to hatching, chicken embryos are ectothermic - controlling Tb by external heat sources. Upon hatching, the hatchling transitions from an ectotherm to an endotherm that has been shown to be delayed by hypoxia. In this study, whole animal oxygen consumption () and liver, heart, and skeletal muscle citrate synthase activity (CSA) and were measured during this transition to endothermy in chickens incubated in normoxia and hypoxia (15% O2). The only significant differences in occurred in 48 hour old hatchlings where was lower in normoxic hatchlings. There were no differences in CS activity between age and incubation oxygen levels. Additionally, preliminary 2-D protein gels of embryo and hatchling liver show changes in the proteome upon hatching. Results suggest that hypoxia had no significant effect on CSA and a minimal effect on .
Date: August 2012
Creator: Neely, Aaron Mackallan