UNT Libraries - Browse


Investigating Molecular Structures: Rapidly Examining Molecular Fingerprints Through Fast Passage Broadband Fourier Transform Microwave Spectroscopy

Description: Microwave spectroscopy is a gas phase technique typically geared toward measuring the rotational transitions of Molecules. The information contained in this type of spectroscopy pertains to a molecules structure, both geometric and electronic, which give insight into a molecule's chemistry. Typically this type of spectroscopy is high resolution, but narrowband ≤1 MHz in frequency. This is achieved by tuning a cavity, exciting a molecule with electromagnetic radiation in the microwave region, turning the electromagnetic radiation o, and measuring a signal from the molecular relaxation in the form of a free induction decay (FID). The FID is then Fourier transformed to give a frequency of the transition. "Fast passage" is defined as a sweeping of frequencies through a transition at a time much shorter (≤10 s) than the molecular relaxation (≈100 s). Recent advancements in technology have allowed for the creation of these fast frequency sweeps, known as "chirps", which allow for broadband capabilities. This work presents the design, construction, and implementation of one such novel, high-resolution microwave spectrometer with broadband capabilities. The manuscript also provides the theory, technique, and motivations behind building of such an instrument. In this manuscript it is demonstrated that, although a gas phase technique, solids, liquids, and transient species may be studied with the spectrometer with high sensitivity, making it a viable option for many molecules wanting to be rotationally studied. The spectrometer has a relative correct intensity feature that, when coupled with theory, may ease the difficulty in transition assignment and facilitate dynamic chemical studies of the experiment. Molecules studied on this spectrometer have, in turn, been analyzed and assigned using common rotational spectroscopic analysis. Detailed theory on the analysis of these molecules has been provided. Structural parameters such as rotational constants and centrifugal distortion constants have been determined and reported for most molecules in ...
Date: May 2011
Creator: Grubbs, Garry Smith, II

Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction

Description: The kinetics of the reaction of atomic sulfur and nitrogen dioxide have been investigated over the temperature range 298 to 650 K and pressures from 14 - 405 mbar using the laser flash photolysis - resonance fluorescence technique. The overall bimolecular rate expression k (T) = (1.88 ± 0.49) x10-11 exp-(4.14 ± 0.10 kJ mol-1)/RT cm3 molecule-1 s-1 is derived. Ab initio calculations were performed at the CCSD(T)/CBS level of theory and a potential energy surface has been derived. RRKM theory calculations were performed on the system. It is found that an initially formed SNO2 is vibrationally excited and the rate of collisional stabilization is slower than the rate of dissociation to SO + NO products by a factor of 100 - 1000, under the experimental conditions.
Date: May 2011
Creator: Thompson, Kristopher Michael

Synthesis and Characterization of Copper Releasing Polymer Nanoparticles

Description: Polymeric nanoparticles were synthesized and loaded with Cu²⁺ to explore the therapeutic potential for catically active transition metal ions and complexes other than cisplatin. Two types of nanoparticles were synthesized to show the potential for polymer based vectors. Copper loading and release were characterized via inductively coupled plasma mass spectrometry (ICP MS), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and elemental analysis. Results demonstrated that Cu could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. The toxicity of these particles was measured in HeLa cells where significant toxicity was observed in vitro via dosing of high Cu-loaded nanoparticles. No significant toxicity was observed in cells dosed with Cu-free nanoparticles.
Date: May 2011
Creator: Harris, Alesha N.