UNT Libraries - 3 Matching Results

Search Results

Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator

Description: This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).
Date: May 2017
Creator: Pham, Thanh Tuong

Investigation of Spray Cooling Schemes for Dynamic Thermal Management

Description: This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 μm thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and ~10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2 - 5 ml/cm².s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
Date: May 2017
Creator: Yata, Vishnu Vardhan Reddy

A Study on the System Reliability of Cold-Formed Steel Roof Trusses

Description: This thesis presents a research project aimed at advancing the treatment of cold-formed steel (CFS) structural reliability in roof trusses. Structural design today relies almost exclusively on component-level design, so structural safety is assured by limiting the probability of failure of individual components. Reliability of the entire system is typically not assessed, so in a worst-case scenario the system reliability may be less than the component reliability, or in a best-case scenario the system reliability may be much greater than the component reliability. A roof truss itself, is a subsystem with several possible failure modes that are being studied in this test program. These trusses are constructed of CFS members that nest with one another at the truss nodes and are connected by drilling fasteners through the mated surfaces, as well as having steel sheathing fastened to the top chords for lateral bracing. Presented in this paper is a series of full-scale static tests on single cold-formed steel roof trusses with a unique experimental setup. The test specimens were carefully monitored to address multiple failure modes: buckling of the top chord, buckling of the truss webs, and any connection failures. This research includes the experimental results, the computed system reliability of the trusses as well as their relationship between the components reliability.
Date: May 2017
Creator: Johnson, Adam