UNT Libraries - Browse


Comparison of Homework Systems (Four Web-Based) used in First-Semester General Chemistry

Description: Web-based homework systems are becoming more common in general chemistry as instructors face ever-increasing enrollment. Yet providing meaningful feedback on assignments remains of the utmost importance. Chemistry instructors consider completion of homework integral to students' success in chemistry, yet only a few studies have compared the use of Web-based systems to the traditional paper-and-pencil homework within general chemistry. This study compares the traditional homework system to four different Web-based systems. Data from eight, semester classes consisting of a diagnostic pre-test, final semester grades, and the number of successful and unsuccessful students are analyzed. Statistically significant results suggest a chemistry instructor should carefully consider options when selecting a homework system.
Date: May 2009
Creator: Belland, Joshua

Electrochemical Deposition of Zinc-Nickel Alloys in Alkaline Solution for Increased Corrosion Resistance.

Description: The optimal conditions for deposition of zinc-nickel alloys onto stainless steel discs in alkaline solutions have been examined. In the past cadmium has been used because it shows good corrosion protection, but other methods are being examined due to the high toxicity and environmental threats posed by its use. Zinc has been found to provide good corrosion resistance, but the corrosion resistance is greatly increased when alloyed with nickel. The concentration of nickel in the deposit has long been a debated issue, but for basic solutions a nickel concentration of 8-15% appears optimal. However, deposition of zinc-nickel alloys from acidic solutions has average nickel concentrations of 12-15%. Alkaline conditions give a more uniform deposition layer, or better metal distribution, thereby a better corrosion resistance. Although TEA (triethanolamine) is most commonly used to complex the metals in solution, in this work I examined TEA along with other complexing agents. Although alkaline solutions have been examined, most research has been done in pH ≥ 12 solutions. However, there has been some work performed in the pH 9.3-9.5 range. This work examines different ligands in a pH 9.3-9.4 range. Direct potential plating and pulse potential plating methods are examined for optimal platings. The deposits were examined and characterized by XRD.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2009
Creator: Conrad, Heidi A.

Interaction of learning approach with concept integration and achievement in a large guided inquiry organic class.

Description: A study was conducted to investigate the relationship of students' concept integration and achievement with time spent within a topic and across related topics in a large first semester guided inquiry organic chemistry class. Achievement was based on evidence of algorithmic problem solving; and concept integration was based on demonstrated performance explaining, applying, and relating concepts to each other. Twelve individual assessments were made of both variables over three related topics - acid/base, nucleophilic substitution and electrophilic addition reactions. Measurements included written, free response and ordered multiple answer questions using a classroom response system. Results demonstrated that students can solve problems without conceptual understanding. A second study was conducted to compare the students' learning approach at the beginning and end of the course. Students were scored on their preferences for a deep, strategic, or surface approach to learning based on their responses to a pre and post survey. Results suggest that students significantly decreased their preference for a surface approach during the semester. Analysis of the data collected was performed to determine the relationship between students' learning approach and their concept integration and achievement in this class. Results show a correlation between a deep approach and concept integration and a strong negative correlation between a surface approach and concept integration.
Date: August 2009
Creator: Mewhinney, Christina

Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase.

Description: The gas phase reactions of atomic chlorine with hydrogen sulfide, ammonia, benzene, and ethylene are investigated using the laser flash photolysis / resonance fluorescence experimental technique. In addition, the kinetics of the reverse processes for the latter two elementary reactions are also studied experimentally. The absolute rate constants for these processes are measured over a wide range of conditions, and the results offer new accurate information about the reactivity and thermochemistry of these systems. The temperature dependences of these reactions are interpreted via the Arrhenius equation, which yields significantly negative activation energies for the reaction of the chlorine atom and hydrogen sulfide as well as for that between the phenyl radical and hydrogen chloride. Positive activation energies which are smaller than the overall endothermicity are measured for the reactions between atomic chlorine with ammonia and ethylene, which suggests that the reverse processes for these reactions also possess negative activation energies. The enthalpies of formation of the phenyl and β-chlorovinyl are assessed via the third-law method. The stability and reactivity of each reaction system is further rationalized based on potential energy surfaces, computed with high-level ab initio quantum mechanical methods and refined through the inclusion of effects which arise from the special theory of relativity. Large amounts of spin-contamination are found to result in inaccurate computed thermochemistry for the phenyl and ethyl radicals. A reformulation of the computational approach to incorporate spin-restricted reference wavefunctions yields computed thermochemistry in good accord with experiment. The computed potential energy surfaces rationalize the observed negative temperature dependences in terms of a chemical activation mechanism, and the possibility that an energized adduct may contribute to product formation is investigated via RRKM theory.
Date: August 2009
Creator: Alecu, Ionut M.

Phosphorescent Emissions of Coinage Metal-Phosphine Complexes: Theory and Photophysics

Description: The major topics discussed are all relevant to the bright phosphorescent emissions of coinage metal complexes (Cu(I), Ag(I) and Au(I)) with an explanation of the theoretical background, computational results and ongoing work on the application in materials and optoelectronic devices. Density functional computations have been performed on the majority of the discussed complexes and determined that the most significant distortion that occurs in Au(I)-phosphine complexes is a near and beyond a T-shape within the P-Au-P angle when the complexes are photoexcited to the lowest phosphorescent excited state. The large distortion is experimentally qualified with the large Stokes' shift that occurs between the excitation and emission spectra and can be as large as 18 000 cm-1 for the neutral Au(I) complexes. The excited state distortion has been thoroughly investigated and it is determined that not only is it pertinent to the efficient luminescence but also for the tunability in the emission. The factors that affect tunability have been determined to be electronics, sterics, rigidity of solution and temperature. The luminescent shifts determined from varying these parameters have been described systematically and have revealed emission colors that span the entire visible spectrum. These astounding features that have been discovered within studies of coinage metal phosphorescent complexes are an asset to applications ranging from materials development to electronics.
Date: December 2009
Creator: Sinha, Pankaj

Predicting Chemical and Biochemical Properties Using the Abraham General Solvation Model

Description: Several studies were done to illustrate the versatillity of the Abraham model in mathematically describing the various solute-solvent interactions found in a wide range of different chemical and biological systems. The first study focused on using the solvation model to construct mathematical correlations describing the minimum inhibitory concentration of organic compounds for growth inhibition towards the three bacterial strains Porphyromonas gingivalis, Selenomonas artemidis, and Streptococcus sobrinus. The next several studies expand the practicallity of the Abraham model by predicting free energies of partition in chemical systems. The free energy studies expand the use of the Abraham model to other temperatures and properties by developing correlations for the enthalpies of solvation of gaseous solutes of various compounds dissolved in water, 1-octanol, hexane, heptane, hexadecane, cyclohexane, benzene, toluene, carbon tetrachloride, chloroform, methanol, ethanol, 1-butanol, propylene carbonate, dimethyl sulfoxide, 1,2-dichloroethane, N,N-dimethylformamide, tert-butanol, dibutyl ether, ethyl acetate, acetonitrile, and acetone. Also, a generic equation for linear alkanes is created for use when individual datasets are small. The prediction of enthalpies of solvation is furthered by modifying the Abraham model so that experimental data measured at different temperatures can be included into a single correlation expression. The temperature dependence is directly included in the model by separating each coefficient into an enthalpic and entropic component. Specifically, the final study describes the effects of temperature on the sorption coefficients of organic gases onto humic acid. The derived predicted values for each research study show a good correlation with experimental values.
Date: May 2009
Creator: Mintz, Christina

Study of Silver Deposition on Silicon (100) by IR Spectroscopy and Patina Formation Study of Oxygen Reduction Reaction on Ruthenium or Platinum

Description: To investigate conditions of silver electroless deposition on silicon (100), optical microscope, atomic force microscope (AFM) and attenuated total reflection infrared spectroscopy (ATR-FTIR) spectroscopy were used. Twenty second dipping in 0.8mM AgNO3/4.9% solution coats a silicon (100) wafer with a thin film of silver nanoparticles very well. According to AFM results, the diameter of silver particles is from 50 to 100nm. After deposition, arithmetic average of absolute values roughness (Ra) increased from ~0.7nm to ~1.2nm and the root mean square roughness (Rq) is from ~0.8nm to ~1.5nm. SCN- ions were applied to detect the existence of silver on silicon surface by ATR-FTIR spectroscopy and IR spectra demonstrate SCN- is a good adsorbent for silver metal. Patina is the general name of copper basic salts which forms green-blue film on the surface of ancient bronze architectures. Patina formation has been found on the surface of platinum or ruthenium after several scans of cyclic voltammetry in 2mM CuSO4/0.1M K2SO4, pH5 solution. Evidence implies that oxygen reduction reaction (ORR) triggers the patina formation. ORR is an important step of fuel cell process and only few sorts of noble metals like platinum can be worked as the catalyst of ORR. Mechanisms of patination involving ORR were investigated by cyclic voltammetry, optical microscope, AFM, rotating disk electrode and other experimental methods: the occurrence of ORR cause the increase of local pH on electrode, and Cu2+ ions prefer to form Cu2O by reduction. Patina forms while Cu2O is oxidizing back to Cu2+.
Date: August 2009
Creator: Yang, Fan

Synthesis and Characterization of Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(dichloride), Platinum(II)(2-(9-anthracenylylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione(maleonitriledithiolate), and Platinum(II)(4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione)(4-Methyl-1,2-benzene dithiol)

Description: Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). The reaction of PtCl2(bpcd) (2) with 4-methyl-1,2-benzene dithiol under basic conditions affords Pt(tdt)(bpcd) (5). Compounds 2-5 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2‑5 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in systems 2-4 has been established by MO calculations at the extended Hückel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives. In addition the new compounds 2-5 have been isolated by column chromatography and characterized by IR, UV-Vis spectroscopy.
Date: December 2009
Creator: Hunt, Sean W.