UNT Libraries - Browse


Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

Description: The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Date: August 2011
Creator: Zhou, Mi

Characterization of Aprotic Solutes and Solvents using Abraham Model Correlations

Description: Experimental data were obtained for the computation of mole fraction solubilities of three dichloronitrobenzenes in organic solvents at 25oC, and solubility ratios were obtained from this data. Abraham model equations were developed for solutes in tributyl phosphate that describe experimental values to within 0.15 log units, and correlations were made to describe solute partitioning in systems that contain either "wet" or "dry" tributyl phosphate. Abraham model correlations have also been developed for solute transfer into anhydrous diisopropyl ether, and these correlations fit in well with those for other ethers. Abraham correlations for the solvation of enthalpy have been derived from experimental and literature data for mesitylene, p-xylene, chlorobenzene, and 1,2-dichlorobenzene at 298.15 K. In addition, the enthalpy contribution of hydrogen bonding between these solutes and acidic solvents were predicted by these correlations and were in agreement with an established method. Residual plots corresponding to Abraham models developed in all of these studies were analyzed for trends in error between experimental and calculated values.
Date: December 2016
Creator: Brumfield, Michela Lynne

Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy

Description: As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient process control. In this work, we investigated the chemical bonding structure of thin fluorocarbon polymer films deposited on low-k dielectric nanostructures, using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Complemented by functional group specific chemical derivatization reactions, fluorocarbon film was established to contain fluorinated alkenes and carbonyl moieties embedded in a highly cross-linked, branched fluorocarbon structure and a model bonding structure was proposed for the first time. In addition, plasma induced damage to high aspect ratio trench low-k structures especially on the trench sidewalls was evaluated both qualitatively and quantitatively. Damage from different plasma processing was correlated with Si-OH formation and breakage of Si-CH3 bonds with increase in C=O functionality. In another endeavor, TiN hard mask defect formation after fluorocarbon plasma etch was characterized and investigated. Finding suggest the presence of water soluble amines that could possibly trigger the formation of TiN surface defect. An effective post etch treatment (PET) methods were applied for etch residue defect removal/suppression.
Date: May 2016
Creator: Rimal, Sirish

Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution

Description: In this work, the possibility of Cu electrodeposition on Ru-Ta alloy thin films is explored. Ru and Ta were sputter deposited on Si substrate with different composition verified by RBS. Four point probe, XRD, TEM and AFM were used to study the properties of Ru-Ta thin films such as sheet resistance, crystallinity, grain size, etc. Cyclic voltammetry is used to study the Cu electrodeposition characteristics on Ru-Ta after various surface pretreatments. The results provide insights on the removal of Ta oxide such that it enables better Cu nucleation and adhesion. Bimetallic corrosion of Cu on modified Ru-Ta surface was studied in CMP related chemicals. In Cu interconnect fabrication process, the making of trenches and vias on low-k dielectric films involves the application of fluorocarbon plasma etch gases. Cu microdots deposited on Ru and Ta substrate were treated by fluorocarbon plasma etch gases such as CF4, CF4+O2, CH2F2, C4F8 and SF6 and investigated by using x-ray photoelectron spectroscopy, contact angle measurement and electrochemical techniques. Micropattern corrosion screening technique was used to measure the corrosion rate of plasma treated Cu. XPS results revealed different surface chemistry on Cu after treating with plasma etching. The fluorine/carbon ratio of the etching gases results in different extent of fluorocarbon polymer residues and affects the cleaning efficiency and Cu corrosion trends.
Date: August 2011
Creator: Sundararaju Meenakshiah Pillai, Karthikeyan

Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development

Description: The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.
Date: August 2011
Creator: Davila, Stephen Juan

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Description: A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.
Date: August 2013
Creator: Pasquale, Frank L.

The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications

Description: The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiNx and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.
Date: August 2014
Creator: Gaddam, Sneha Sen

Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives

Description: Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numerous methods. Synthetic LDH is used in electrode materials, adsorbents, nuclear waste treatment, drug delivery systems, water treatment, corrosion protection coatings, and catalysis. In this dissertation Zn-Al-NO3 derivatives of zaccagnaite (Zn4Al2(OH)12[CO3]·3H2O) are electrochemically synthesized as films and applied to sensing and corrosion resistance applications. First, Zn-Al-NO3 LDH was potentiostatically electrosynthesized on glassy carbon substrates and applied to the electrochemical detection of gallic acid and caffeic acid in aqueous solutions. The modified electrode was then applied to the detection of gallic acid in green tea samples. The focus of the work shifts to corrosion protection of stainless steel. Modified zaccagnaite films were electrodeposited onto stainless steel in multiples layers to reduce defects caused by drying of the films. The films were deposited using a step potential method. The corrosion resistance of the films in a marine environment was investigated while immersed in 3.5 wt.% NaCl environments. Next modified zaccagnaite films were potentiostatically electrodeposited onto stainless steel followed by a hydrophobization reaction with palmitic acid in order to prepare superhydrophobic (>150° contact angle) surfaces. Each parameter of the film synthesis was optimized to produce a surface with the highest possible contact angle. The fifth chapter examines the corrosion resistance of the optimized superhydrophobic film and a hydrophobic film. The hydrophobic film is prepared using the same procedure as the superhydrophobic film except for a difference in electrodeposition potential. The ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2015
Creator: Kahl, Michael S.

Electrodeposition of Nickel and Nickel Alloy Coatings with Layered Silicates for Enhanced Corrosion Resistance and Mechanical Properties

Description: The new nickel/layered silicate nanocomposites were electrodeposited from different pHs to study the influence on the metal ions/layered silicate plating solution and on the properties of the deposited films. Nickel/layered silicate nanocomposites were fabricated from citrate bath atacidic pHs (1.6−3.0), from Watts’ type solution (pH ~4-5), and from citrate bath at basic pH (~9). Additionally, the new nickel/molybdenum/layered silicate nanocomposites were electrodeposited from citrate bath at pH 9.5. The silicate, montmorillonite (MMT), was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The preferred crystalline orientation and the crystalline size of nickel, nickel/layered silicate, nickel/molybdenum, and nickel/molybdenum/layered silicate films were examined by X-ray diffraction. The microstructure of the coatings and the surface roughness was investigated by scanning electron microscopy and atomic force microscopy. Nickel/molybdenum/layered silicate nanocomposites containing low content of layered silicate (1.0 g/L) had increase 32 % hardness and 22 % Young’s modulus values over the pure nickel/molybdenum alloy films. The potentiodynamic polarization and electrochemical impedance measurements showed that the nickel/molybdenum/layered silicate nanocomposite layers have higher corrosion resistance in 3.5% NaCl compared to the pure alloy films. The corrosion current density of the nickel/molybdenum/layered silicate nanocomposite composed of 0.5 g/L MMT is 0.63 µA·cm-2 as compare to a nickel/molybdenum alloy which is 2.00 µA·cm-2.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2014
Creator: Tientong, Jeerapan

Fundamental Studies of Copper Bimetallic Corrosion in Ultra Large Scale Interconnect Fabrication Process

Description: In this work, copper bimetallic corrosion and inhibition in ultra large scale interconnect fabrication process is explored. Corrosion behavior of physical vapor deposited (PVD) copper on ruthenium on acidic and alkaline solutions was investigated with and without organic inhibitors. Bimetallic corrosion screening experiments were carried out to determine the corrosion rate. Potentiodynamic polarization experiments yielded information on the galvanic couples and also corrosion rates. XPS and FTIR surface analysis gave important information pertaining inhibition mechanism of organic inhibitors. Interestingly copper in contact with ruthenium in cleaning solution led to increased corrosion rate compared to copper in contact with tantalum. On the other hand when cobalt was in contact with copper, cobalt corroded and copper did not. We ascribe this phenomenon to the difference in the standard reduction potentials of the two metals in contact and in such a case a less noble metal will be corroded. The effects of plasma etch gases such as CF4, CF4+O2, C4F8, CH2F2 and SF6 on copper bimetallic corrosion was investigated too in alkaline solution. It was revealed that the type of etching gas plasma chemistry used in Cu interconnect manufacturing process creates copper surface modification which affects corrosion behavior in alkaline solution. The learning from copper bimetallic corrosion studies will be useful in the development of etch and clean formulations that will results in minimum defects and therefore increase the yield and reliability of copper interconnects.
Date: May 2014
Creator: Koskey, Simon Kibet

Interfacial Electrochemistry of Copper and Spectro-Electrochemical Characterization of Oxygen Reduction Reaction

Description: The first part of this dissertation highlights the contents of the electrochemical characterization of Cu and its electroplating on Ru-based substrates. The growth of Ru native oxide does diminish the efficiency of Cu plating on Ru surface. However, the electrochemical formed irreversible Ru hydrate dioxide (RuOxHy) shows better coverage of Cu UPD. The conductive Ru oxides are directly plateable liner materials as potential diffusion barriers for the IC fabrication. The part II of this dissertation demonstrates the development of a new rapid corrosion screening methodology for effective characterization Cu bimetallic corrosion in CMP and post-CMP environments. The corrosion inhibitors and antioxidants were studied in this dissertation. In part III, a new SEC methodology was developed to study the ORR catalysts. This novel SEC cell can offer cheap, rapid optical screening results, which helps the efficient development of a better ORR catalyst. Also, the SEC method is capable for identifying the poisoning of electrocatalysts. Our data show that the RuOxHy processes several outstanding properties of ORR such as high tolerance of sulfation, high kinetic current limitation and low percentage of hydrogen peroxide.
Date: August 2011
Creator: Yu, Kyle Kai-Hung

Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras

Description: We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. (Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Ross, Nick Mark

Investigation of Novel Electrochemical Synthesis of Bioapatites and Use in Elemental Bone Analysis

Description: In this research, electrochemical methods are used to synthesize the inorganic fraction of bone, hydroxyapatite, for application in biological implants and as a calibration material for elemental analysis in human bone. Optimal conditions of electrochemically deposited uniform apatite coatings on stainless steel were investigated. Apatite is a ceramic with many different phases and compositions that have beneficial characteristics for biomedical applications. Of those phases hydroxyapatite (HA) is the most biocompatible and is the primary constituent of the inorganic material in bones. HA coatings on metals and metal alloys have the ability to bridge the growth between human tissues and implant interface, where the metal provides the strength and HA provides the needed bioactivity. The calcium apatites were electrochemically deposited using a modified simulated body fluid adjusted to pH 4-10, for 1-3 hours at varying temperature of 25-65°C while maintaining cathodic potentials of -1.0 to -1.5V. It was observed that the composition and morphology of HA coatings change during deposition by the concentration of counter ions in solution, pH, temperature, applied potential, and post-sintering. The coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The precipitated powders from the experiment were also characterized, with results showing similarities to biological apatite. There is a need for quantitative elemental analysis of calcified biological matrices such as bone and teeth; however there are no suitable calibration materials commercially available for quantitative analysis. Matrix-matched standards are electrochemically synthesized for LA-ICP-MS analysis of human bone. The synthetic bioapatite is produced via a hydrothermal electrochemical process using a simulated body fluid solution to form hydroxyapatite. Additional bioapatite standards are synthesized containing trace amounts of metals. The x-ray diffraction of the synthesized standards shows an increase in cell volume for the crystal structure from 0.534 to 0.542 nm3 with the substitution of ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2012
Creator: DeLeon, Vallerie H.

Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Raman Spectroscopy Imaging of Biological Tissues

Description: Laser Ablation Inductively coupled plasma mass spectrometry (LA-ICP-MS) and Raman spectroscopy are both powerful imaging techniques. Their applications are numerous and extremely potential in the field of biology. In order to improve upon LA-ICP-MS an in-house built cold cell was developed and its effectiveness studied by imaging Brassica napus seeds. To further apply LA-ICP-MS and Raman imaging to the field of entomology a prong gilled mayfly (Ephemeroptera: Leptophlebiidae) from the Róbalo River, located on Navarino Island in Chile, was studied. Analysis of both samples showcased LA-ICP-MS and Raman spectroscopy as effective instruments for imaging trace elements and larger molecules in biological samples respectively.
Date: May 2016
Creator: Gorishek, Emma

Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry

Description: The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Bowman, Amanda

Miniature Mass Spectrometry: Theory, Development and Applications

Description: As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable system. First, micrometer-scale mass analyzers and other electrostatic components were fabricated using silicon on insulator-deep reactive ion etching, and tested. Second, the dimensions of an ion trap were scaled to the millimeter level and fabricated from common metals and commercially available vacuum plastics. This instrument was tested for use in ion isolation and collision induced dissociation for secondary mass spectrometry and confirmatory analyses of unknowns. In addition to portable instrumentation, miniature mass spectrometers show potential for usage in process and reaction monitoring. To this end, a commercial residual gas analyzer was used to monitor plasma deposition and cleaning inside of a chamber designed for laser ablation and soft landing-ion mobility to generate metal-main group clusters. This chamber was also equipped for multiple types of spectral analysis in order to identify and characterize the clusters. Finally, a portion of this research was dedicated to method development in sample collection and analysis for forensic study. A new method for the analysis of illicit chemistries collected via electrostatic lifting is presented. This method incorporates surface-enhanced Raman microscopy as a prescreening tool for nanoextraction and nanospray ionization mass spectrometry.
Date: December 2013
Creator: Fox, James D.

Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides

Description: Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
Date: August 2011
Creator: Powoski, Robert A.

Novel Carborane Derived Semiconducting Thin Films for Neutron Detection and Device Applications

Description: Novel carborane (B10C2H12) and aromatic compounds (benzene, pyridine, diaminobenzene) copolymers and composite materials have been fabricated by electron beam induced cross-linking and plasma enhanced chemical vapor deposition (PECVD) respectively. Chemical and electronic structure of these materials were studied using X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS). UPS suggest that the systematic tuning of electronic structure can be achieved by using different aromatic compounds as co-precursors during the deposition. Furthermore, top of valence band is composed of states from the aromatic moieties implying that states near bottom of the conduction band is derived from carborane moieties. Current- voltage (I-V) measurements on the ebeam derived B10C2HX: Diaminobenzene films suggest that these films exhibit enhanced electron hole separation life time. Enhanced electron hole separation and charge transport are critical parameters in designing better neutron voltaic devices. Recently, PECVD composite films of ortho-carborane and pyridine exhibited enhanced neutron detection efficiency even under zero bias compared to the pure ortho-carborane derived films. This enhancement is most likely due to longer electron-hole separation, better charge transport or a combination of both. The studies determining the main factors for the observed enhanced neutron detection are in progress by fabricating composite films of carborane with other aromatic precursors and by altering the plasma deposition conditions. This research will facilitate the development of highly sensitive and cost effective neutron detectors, and has potential applications in spintronics and photo-catalysis.
Date: August 2015
Creator: James, Robinson

Synthesis and Electron Transfer Studies of Supramolecular Triads

Description: This study expands the role of polythiophenes as an electron donating chromophore within energy harvesting milti-modular donor-acceptor systems. The polythiophene moiety would act as an electron donating spacer group between the donor and acceptor entities, viz., phenothiazine and fulleropyrrolidine, respectively, in the newly synthesized supramolecular triads. The triads 10-{[2,2';5',2"] terthiophene-5-fulleropyrrolidine} phenothiazine and 10-{[2,2'] bithiophene-5-fulleropyrrolidine} phenothiazine were synthesized and characterized through electrochemical and spectroscopic methods to ascertain their structural integrity. the componets of the triads were selected for their established redox parameters. Phenothiazine would act as a secondary donor and would facilitate hole-transfer from the polythiophene primary electron donor, due to its ease of oxidation and yield a long-lived charge separated state. Fulleropyrrolidine would act as an acceptor for ease of reductive capabilities and its ability to hold multiple charges. Finally, occurrence of photoinduced electron transferleading to the anticipated charge separated states is established from advanced transient spectroscopic techniques on these novel supramolecular systems.
Date: May 2016
Creator: Bodenstedt, Kurt

Thin Cr2O3 (0001) Films and Co (0001) Films Fabrication for Spintronics

Description: The growth of Co (0001) films and Cr2O3 (0001)/Co (0001) has been investigated using surface analysis methods. Such films are of potential importance for a variety of spintronics applications. Co films were directly deposited on commercial Al2O3 (0001) substrates by magnetron sputter deposition or by molecular beam epitaxy (MBE), with thicknesses of ~1000Å or 30Å, respectively. Low Energy Electron Diffraction (LEED) shows hexagonal (1x1) pattern for expected epitaxial films grown at 800 K to ensure the hexagonally close-packed structure. X-ray photoemission spectroscopy (XPS) indicates the metallic cobalt binding energy for Co (2p3/2) peak, which is at 778.1eV. Atomic force microscopy (AFM) indicates the root mean square (rms) roughness of Co films has been dramatically reduced from 10 nm to 0.6 nm by optimization of experiment parameters, especially Ar pressure during plasma deposition. Ultrathin Cr2O3 films (10 to 25 Å) have been successfully fabricated on 1000Å Co (0001) films by MBE. LEED data indicate Cr2O3 has C6v symmetry and bifurcated spots from Co to Cr2O3 with Cr2O3 thickness less than 6 Å. XPS indicates the binding energy of Cr 2p(3/2) is at 576.6eV which is metallic oxide peak. XPS also shows the growth of Cr2O3 on Co (0001) form a thin Cobalt oxide interface, which is stable after exposure to ambient and 1000K UHV anneal.
Date: December 2015
Creator: Cao, Yuan