UNT Libraries - 2 Matching Results

Search Results

Identification of Three Symbiosome Targeting Domains in the MtENOD8 Protein and Cell-to-cell MtENOD8 mRNA Movement in Nodules

Description: The model legume, Medicago truncatula, is able to enter into a symbiotic relationship with soil bacteria, known as rhizobia. This relationship involves a carbon for nitrogen exchange in which the plant provides reduced carbon from photosynthesis in exchange for reduced, or “fixed” atmospheric nitrogen, which allows the plant to thrive in nitrogen depleted soils. Rhizobia infect and enter plant root organs, known as nodules, where they reside inside the plant cell in a novel organelle, known as the symbiosome where nitrogen fixation occurs. the symbiosome is enriched in plant proteins, however, little is known about the mechanisms that direct plant proteins to the symbiosome. Using the M. truncatula ENOD8 (MtENOD8) protein as a model to explore symbiosome protein targeting, 3-cis domains were identified within MtENOD8 capable of directing green fluorescent protein (GFP) to the symbiosome, including its N-terminal signal peptide (SP). the SP delivered GFP to the vacuole in the absence of nodules suggesting that symbiosome proteins share a common targeting pathway with vacuolar proteins. a time course analysis during nodulation indicated that there is a nodule specific redirection of MtENOD8-SP from the vacuole to the symbiosome in a MtNIP/LATD dependent manner. GFP expression by the MtENOD8 promoter revealed spatial discrepancy between promoter activity and protein localization. in situ localization of MtENOD8 mRNA showed localization to infected cells, where the protein is found, suggesting mRNA cell-to-cell movement. Expression of MtENOD8 in Arabidopsis showed that the SP did not direct GFP to the vacuole indicating that vacuolar targeting of MtENOD8’s SP may be legume specific. Taken together, the research presented here indicates that the MtENOD8 symbiosome protein has evolved redundant domains for targeting, which has part of a common pathway with vacuolar proteins. Observed spatial discrepancy between the MtENOD8 promoter and protein shows additional mechanisms of gene regulation through cell-to-cell mRNA ...
Date: May 2012
Creator: Meckfessel, Matthew Harold

Proteomic Responses in the Gill of Zebrafish Following Exposure to Ibuprofen and Naproxen

Description: Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most abundant environmental pharmaceutical contaminants. In this study, a proteomic analysis was conducted to identify proteins differentially expressed in gill tissue of zebrafish (Danio rerio) after a 14-day exposure to the NSAIDs ibuprofen or naproxen. A total of 104 proteins with altered expression as indicated by 2-dimensional electrophoresis were analyzed by liquid chromatography with ion trap mass spectrometry (MS/MS). A total of 14 proteins fulfilled our requirements for identification which included consistency among replicate gels as well as successful MS/MS ion searches with the MASCOT database. The most prominent feature of the differential protein expression observed after NSAID exposure was an up-regulation of proteins belonging to the globin family which are involved in the transport of oxygen from gills and availability of heme molecules required for synthesis of cyclooxygenase. Differential expression was observed at exposure concentrations as low as 1-10 µg/L indicating that altered gene expression may occur in fish subjected to environmentally realistic levels of NSAID exposure.
Date: August 2012
Creator: Adhikari, Prem R.