UNT Libraries - 63 Matching Results

Search Results

Accurate Joint Detection from Depth Videos towards Pose Analysis

Description: Joint detection is vital for characterizing human pose and serves as a foundation for a wide range of computer vision applications such as physical training, health care, entertainment. This dissertation proposed two methods to detect joints in the human body for pose analysis. The first method detects joints by combining body model and automatic feature points detection together. The human body model maps the detected extreme points to the corresponding body parts of the model and detects the position of implicit joints. The dominant joints are detected after implicit joints and extreme points are located by a shortest path based methods. The main contribution of this work is a hybrid framework to detect joints on the human body to achieve robustness to different body shapes or proportions, pose variations and occlusions. Another contribution of this work is the idea of using geodesic features of the human body to build a model for guiding the human pose detection and estimation. The second proposed method detects joints by segmenting human body into parts first and then detect joints by making the detection algorithm focusing on each limb. The advantage of applying body part segmentation first is that the body segmentation method narrows down the searching area for each joint so that the joint detection method can provide more stable and accurate results.
Date: May 2018
Creator: Kong, Longbo

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Description: In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize productivity by balancing power usage and system performance. In this dissertation, we develop an autonomic power-aware system management framework for large-scale computer systems. We propose a series of techniques including coarse-grain power profiling, VM power modelling, power-aware resource auto-configuration and full-system power usage simulator. These techniques help us to understand the characteristics of power consumption of various system components. Based on these techniques, we are able to test various job scheduling strategies and develop resource management approaches to enhance the systems' power efficiency.
Date: August 2015
Creator: Zhang, Ziming

Advanced Power Amplifiers Design for Modern Wireless Communication

Description: Modern wireless communication systems use spectrally efficient modulation schemes to reach high data rate transmission. These schemes are generally involved with signals with high peak-to-average power ratio (PAPR). Moreover, the development of next generation wireless communication systems requires the power amplifiers to operate over a wide frequency band or multiple frequency bands to support different applications. These wide-band and multi-band solutions will lead to reductions in both the size and cost of the whole system. This dissertation presents several advanced power amplifier solutions to provide wide-band and multi-band operations with efficiency improvement at power back-offs.
Date: August 2015
Creator: Shao, Jin

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Description: Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Joshi, Shital

Analysis and Performance of a Cyber-Human System and Protocols for Geographically Separated Collaborators

Description: This dissertation provides an innovative mechanism to collaborate two geographically separated people on a physical task and a novel method to measure Complexity Index (CI) and calculate Minimal Complexity Index (MCI) of a collaboration protocol. The protocol is represented as a structure, and the information content of it is measured in bits to understand the complex nature of the protocol. Using the complexity metrics, one can analyze the performance of a collaborative system and a collaboration protocol. Security and privacy of the consumers are vital while seeking remote help; this dissertation also provides a novel authorization framework for dynamic access control of resources on an input-constrained appliance used for completing the physical task. Using the innovative Collaborative Appliance for REmote-help (CARE) and with the support of a remotely located expert, fifty-nine subjects with minimal or no prior mechanical knowledge are able to elevate a car for replacing a tire in an average time of six minutes and 53 seconds and with an average protocol complexity of 171.6 bits. Moreover, thirty subjects with minimal or no prior plumbing knowledge are able to change the cartridge of a faucet in an average time of ten minutes and with an average protocol complexity of 250.6 bits. Our experiments and results show that one can use the developed mechanism and methods for expanding the protocols for a variety of home, vehicle, and appliance repairs and installations.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Jonnada, Srikanth

Application-Specific Things Architectures for IoT-Based Smart Healthcare Solutions

Description: Human body is a complex system organized at different levels such as cells, tissues and organs, which contributes to 11 important organ systems. The functional efficiency of this complex system is evaluated as health. Traditional healthcare is unable to accommodate everyone's need due to the ever-increasing population and medical costs. With advancements in technology and medical research, traditional healthcare applications are shaping into smart healthcare solutions. Smart healthcare helps in continuously monitoring our body parameters, which helps in keeping people health-aware. It provides the ability for remote assistance, which helps in utilizing the available resources to maximum potential. The backbone of smart healthcare solutions is Internet of Things (IoT) which increases the computing capacity of the real-world components by using cloud-based solutions. The basic elements of these IoT based smart healthcare solutions are called "things." Things are simple sensors or actuators, which have the capacity to wirelessly connect with each other and to the internet. The research for this dissertation aims in developing architectures for these things, focusing on IoT-based smart healthcare solutions. The core for this dissertation is to contribute to the research in smart healthcare by identifying applications which can be monitored remotely. For this, application-specific thing architectures were proposed based on monitoring a specific body parameter; monitoring physical health for family and friends; and optimizing the power budget of IoT body sensor network using human body communications. The experimental results show promising scope towards improving the quality of life, through needle-less and cost-effective smart healthcare solutions.
Date: May 2018
Creator: Sundaravadivel, Prabha

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Description: The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. This hyper plane is named as 'positive plane'. 'Convex hulls' are used to model positive planes. Comparisons with traditional classifiers such as K-nearest neighbor (K-NN) and support vector machines (SVM) proves the soundness of the proposed method in terms of accuracy and speed that are critical in the targeted real-time quality measurement system.
Date: August 2013
Creator: Kumara, Muthukudage Jayantha

Computational Approaches for Analyzing Social Support in Online Health Communities

Description: Online health communities (OHCs) have become a medium for patients to share their personal experiences and interact with peers on topics related to a disease, medication, side effects, and therapeutic processes. Many studies show that using OHCs regularly decreases mortality and improves patients mental health. As a result of their benefits, OHCs are a popular place for patients to refer to, especially patients with a severe disease, and to receive emotional and informational support. The main reasons for developing OHCs are to present valid and high-quality information and to understand the mechanism of social support in changing patients' mental health. Given the purpose of OHC moderators for developing OHCs applications and the purpose of patients for using OHCs, there is no facility, feature, or sub-application in OHCs to satisfy patient and moderator goals. OHCs are only equipped with a primary search engine that is a keyword-based search tool. In other words, if a patient wants to obtain information about a side-effect, he/she needs to browse many threads in the hope that he/she can find several related comments. In the same way, OHC moderators cannot browse all information which is exchanged among patients to validate their accuracy. Thus, it is critical for OHCs to be equipped with computational tools which are supported by several sophisticated computational models that provide moderators and patients with the collection of messages that they need for making decisions or predictions. We present multiple computational models to alleviate the problem of OHCs in providing specific types of messages in response to the specific moderator and patient needs. Specifically, we focused on proposing computational models for the following tasks: identifying emotional support, which presents OHCs moderators, psychologists, and sociologists with insightful views on the emotional states of individuals and groups, and identifying informational support, which provides patients with ...
Date: May 2018
Creator: Khan Pour, Hamed

A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

Description: Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.
Date: August 2014
Creator: O’Neill II, Martin Joseph

Computational Methods to Optimize High-Consequence Variants of the Vehicle Routing Problem for Relief Networks in Humanitarian Logistics

Description: Optimization of relief networks in humanitarian logistics often exemplifies the need for solutions that are feasible given a hard constraint on time. For instance, the distribution of medical countermeasures immediately following a biological disaster event must be completed within a short time-frame. When these supplies are not distributed within the maximum time allowed, the severity of the disaster is quickly exacerbated. Therefore emergency response plans that fail to facilitate the transportation of these supplies in the time allowed are simply not acceptable. As a result, all optimization solutions that fail to satisfy this criterion would be deemed infeasible. This creates a conflict with the priority optimization objective in most variants of the generic vehicle routing problem (VRP). Instead of efficiently maximizing usage of vehicle resources available to construct a feasible solution, these variants ordinarily prioritize the construction of a minimum cost set of vehicle routes. Research presented in this dissertation focuses on the design and analysis of efficient computational methods for optimizing high-consequence variants of the VRP for relief networks. The conflict between prioritizing the minimization of the number of vehicles required or the minimization of total travel time is demonstrated. The optimization of the time and capacity constraints in the context of minimizing the required vehicles are independently examined. An efficient meta-heuristic algorithm based on a continuous spatial partitioning scheme is presented for constructing a minimized set of vehicle routes in practical instances of the VRP that include critically high-cost penalties. Multiple optimization priority strategies that extend this algorithm are examined and compared in a large-scale bio-emergency case study. The algorithms designed from this research are implemented and integrated into an existing computational framework that is currently used by public health officials. These computational tools enhance an emergency response planner's ability to derive a set of vehicle routes specifically ...
Date: August 2018
Creator: Urbanovsky, Joshua C

Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams

Description: Virtual teams in industry are increasingly being used to develop software, create products, and accomplish tasks. However, analyzing those collaborations under same-time/different-place conditions is well-known to be difficult. In order to overcome some of these challenges, this research was concerned with the study of collaboration-based, content-based and temporal measures and their ability to predict cohesion within global software development projects. Messages were collected from three software development projects that involved students from two different countries. The similarities and quantities of these interactions were computed and analyzed at individual and group levels. Results of interaction-based metrics showed that the collaboration variables most related to Task Cohesion were Linguistic Style Matching and Information Exchange. The study also found that Information Exchange rate and Reply rate have a significant and positive correlation to Task Cohesion, a factor used to describe participants' engagement in the global software development process. This relation was also found at the Group level. All these results suggest that metrics based on rate can be very useful for predicting cohesion in virtual groups. Similarly, content features based on communication categories were used to improve the identification of Task Cohesion levels. This model showed mixed results, since only Work similarity and Social rate were found to be correlated with Task Cohesion. This result can be explained by how a group's cohesiveness is often associated with fairness and trust, and that these two factors are often achieved by increased social and work communications. Also, at a group-level, all models were found correlated to Task Cohesion, specifically, Similarity+Rate, which suggests that models that include social and work communication categories are also good predictors of team cohesiveness. Finally, temporal interaction similarity measures were calculated to assess their prediction capabilities in a global setting. Results showed a significant negative correlation between the Pacing Rate and ...
Date: May 2017
Creator: Castro Hernandez, Alberto

Dataflow Processing in Memory Achieves Significant Energy Efficiency

Description: The large difference between processor CPU cycle time and memory access time, often referred to as the memory wall, severely limits the performance of streaming applications. Some data centers have shown servers being idle three out of four clocks. High performance instruction sequenced systems are not energy efficient. The execute stage of even simple pipeline processors only use 9% of the pipeline's total energy. A hybrid dataflow system within a memory module is shown to have 7.2 times the performance with 368 times better energy efficiency than an Intel Xeon server processor on the analyzed benchmarks. The dataflow implementation exploits the inherent parallelism and pipelining of the application to improve performance without the overhead functions of caching, instruction fetch, instruction decode, instruction scheduling, reorder buffers, and speculative execution used by high performance out-of-order processors. Coarse grain reconfigurable logic in an energy efficient silicon process provides flexibility to implement multiple algorithms in a low energy solution. Integrating the logic within a 3D stacked memory module provides lower latency and higher bandwidth access to memory while operating independently from the host system processor.
Date: August 2018
Creator: Shelor, Charles F.

Detection and Classification of Heart Sounds Using a Heart-Mobile Interface

Description: An early detection of heart disease can save lives, caution individuals and also help to determine the type of treatment to be given to the patients. The first test of diagnosing a heart disease is through auscultation - listening to the heart sounds. The interpretation of heart sounds is subjective and requires a professional skill to identify the abnormalities in these sounds. A medical practitioner uses a stethoscope to perform an initial screening by listening for irregular sounds from the patient's chest. Later, echocardiography and electrocardiography tests are taken for further diagnosis. However, these tests are expensive and require specialized technicians to operate. A simple and economical way is vital for monitoring in homecare or rural hospitals and urban clinics. This dissertation is focused on developing a patient-centered device for initial screening of the heart sounds that is both low cost and can be used by the users on themselves, and later share the readings with the healthcare providers. An innovative mobile health service platform is created for analyzing and classifying heart sounds. Certain properties of heart sounds have to be evaluated to identify the irregularities such as the number of heart beats and gallops, intensity, frequency, and duration. Since heart sounds are generated in low frequencies, human ears tend to miss certain sounds as the high frequency sounds mask the lower ones. Therefore, this dissertation provides a solution to process the heart sounds using several signal processing techniques, identifies the features in the heart sounds and finally classifies them. This dissertation enables remote patient monitoring through the integration of advanced wireless communications and a customized low-cost stethoscope. It also permits remote management of patients' cardiac status while maximizing patient mobility. The smartphone application facilities recording, processing, visualizing, listening, and classifying heart sounds. The application also generates an electronic medical ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Thiyagaraja, Shanti

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Description: Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to detect multiple abnormalities. Most abnormalities in endoscopy images have unique textures which are clearly distinguishable from normal textures. In this dissertation a new method is proposed that achieves the objective of detecting multiple abnormalities with a higher accuracy using a multi-texture analysis technique. The multi-texture analysis method is designed by representing WCE and colonoscopy image textures as textons.
Date: August 2013
Creator: Nawarathna, Ruwan D.

Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells

Description: The demand for higher data rates for indoor and cell-edge users led to evolution of small cells. LTE femtocells, one of the small cell categories, are low-power low-cost mobile base stations, which are deployed within the coverage area of the traditional macro base station. The cross-tier and co-tier interferences occur only when the macrocell and femtocell share the same frequency channels. Open access (OSG), closed access (CSG), and hybrid access are the three existing access-control methods that decide users' connectivity to the femtocell access point (FAP). We define a network performance function, network productivity, to measure the traffic that is carried successfully. In this dissertation, we evaluate call mobility in LTE integrated network and determine optimized network productivity with variable call arrival rate in given LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells. In the second scenario, we evaluate call mobility in LTE integrated network with increasing femtocells and maximize network productivity with variable femtocells distribution per macrocell with constant call arrival rate in uniform LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells for network deployment where peak productivity is identified. We analyze the effects of call mobility on network productivity by simulating low, high, and no mobility scenarios and study the impact based on offered load, handover traffic and blocking probabilities. Finally, we evaluate and optimize performance of fractional frequency reuse (FFR) mechanism and study the impact of proposed metric weighted user satisfaction with sectorized FFR configuration.
Date: December 2017
Creator: Sawant, Uttara

Evaluation Techniques and Graph-Based Algorithms for Automatic Summarization and Keyphrase Extraction

Description: Automatic text summarization and keyphrase extraction are two interesting areas of research which extend along natural language processing and information retrieval. They have recently become very popular because of their wide applicability. Devising generic techniques for these tasks is challenging due to several issues. Yet we have a good number of intelligent systems performing the tasks. As different systems are designed with different perspectives, evaluating their performances with a generic strategy is crucial. It has also become immensely important to evaluate the performances with minimal human effort. In our work, we focus on designing a relativized scale for evaluating different algorithms. This is our major contribution which challenges the traditional approach of working with an absolute scale. We consider the impact of some of the environment variables (length of the document, references, and system-generated outputs) on the performance. Instead of defining some rigid lengths, we show how to adjust to their variations. We prove a mathematically sound baseline that should work for all kinds of documents. We emphasize automatically determining the syntactic well-formedness of the structures (sentences). We also propose defining an equivalence class for each unit (e.g. word) instead of the exact string matching strategy. We show an evaluation approach that considers the weighted relatedness of multiple references to adjust to the degree of disagreements between the gold standards. We publish the proposed approach as a free tool so that other systems can use it. We have also accumulated a dataset (scientific articles) with a reference summary and keyphrases for each document. Our approach is applicable not only for evaluating single-document based tasks but also for evaluating multiple-document based tasks. We have tested our evaluation method for three intrinsic tasks (taken from DUC 2004 conference), and in all three cases, it correlates positively with ROUGE. Based on our experiments ...
Date: August 2016
Creator: Hamid, Fahmida

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting multimodal sentiment analysis system is shown to significantly outperform the use of language alone. Using this system, we were able to predict the sentiment expressed in video reviews and also the sentiment experienced by viewers while exposed to emotionally loaded content. Second, the thesis provides evidence of the portability of the developed strategies to other affect recognition problems. We provided support for this by studying the deception detection problem. Third, this thesis contributes several multimodal datasets that will enable further research in sentiment and deception detection.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Pérez-Rosas, Verónica

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed constructions are practical to implement and have reasonable costs, while providing strong privacy assurances.
Date: May 2011
Creator: Vishwanathan, Roopa

Extrapolating Subjectivity Research to Other Languages

Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the implementation of techniques on par with those developed for English, and by applying methods that are lighter in the usage of text processing infrastructure, we are able to conduct multilingual subjectivity research in these languages as well. Since my aim is also to minimize the amount of manual work required to develop lexica or corpora in these languages, the techniques proposed employ a lever approach, where English often acts as the donor language (the fulcrum in a lever) and allows through a relatively minimal amount of effort to establish preliminary subjectivity research in a target language.
Date: May 2013
Creator: Banea, Carmen

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Description: Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the meaning of the sentence does not change after the substitutions. This solution has manifested itself in the SemEval 2007 task of lexical substitution and the more recent SemEval 2010 task of cross-lingual lexical substitution (which I helped organize), where given an English context and a target word within that context, the systems are required to provide between one and ten appropriate substitutes (in English) or translations (in Spanish) for the target word. In this dissertation, I present a comprehensive overview of state-of-the-art research and describe new experiments to tackle the tasks of lexical substitution and cross-lingual lexical substitution. In particular ...
Date: May 2013
Creator: Sinha, Ravi Som

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Description: The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. The proposed methodologies combine Kriging metamodels with selected algorithms for ultra-fast layout optimization. The selected algorithms explored are: Gravitational Search Algorithm (GSA), Simulated Annealing Optimization (SAO), and Ant Colony Optimization (ACO). Experimental results demonstrate that the proposed Kriging metamodel based methodologies can perform the optimizations with minimal computational burden compared to traditional (SPICE-based) design flows.
Date: May 2014
Creator: Okobiah, Oghenekarho

Hybrid Approaches in Test Suite Prioritization

Description: The rapid advancement of web and mobile application technologies has recently posed numerous challenges to the Software Engineering community, including how to cost-effectively test applications that have complex event spaces. Many software testing techniques attempt to cost-effectively improve the quality of such software. This dissertation primarily focuses on that of hybrid test suite prioritization. The techniques utilize two or more criteria to perform test suite prioritization as it is often insufficient to use only a single criterion. The dissertation consists of the following contributions: (1) a weighted test suite prioritization technique that employs the distance between criteria as a weighting factor, (2) a coarse-to-fine grained test suite prioritization technique that uses a multilevel approach to increase the granularity of the criteria at each subsequent iteration, (3) the Caret-HM tool for Android user session-based testing that allows testers to record, replay, and create heat maps from user interactions with Android applications via a web browser, and (4) Android user session-based test suite prioritization techniques that utilize heuristics developed from user sessions created by Caret-HM. Each of the chapters empirically evaluate the respective techniques. The proposed techniques generally show improved or equally good performance when compared to the baselines, depending on an application under test. Further, this dissertation provides guidance to testers as it relates to the use of the proposed hybrid techniques.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2018
Creator: Nurmuradov, Dmitriy

Incremental Learning with Large Datasets

Description: This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from UCI and endoscopy videos, it is evident that the GISVM achieved satisfactory classifiers that closely model the underlying data distribution. GISVM improves the performance in sensitivity in the incremental steps, significantly reduced the demand for memory space, and demonstrates the ability of recovery from temporary performance degradation.
Date: May 2012
Creator: Giritharan, Balathasan

Indoor Localization Using Magnetic Fields

Description: Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation ...
Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar