UNT Libraries - Browse

ABOUT BROWSE FEED

Gurevich Magnetomorphic Oscillations in Single Crystals of Aluminum at Helium Temperatures

Description: The Sondheimer theory was tested by looking for oscillatory phenomena in a group of single crystals representing a range in dimensions from matchbox geometry to thin-film geometry. The single crystals were identical with respect to impurity content, strain, orientation, surface condition, and probe placement.
Date: August 1967
Creator: Mollenkopf, Howard Charles

Steady-state and Dynamic Probe Characteristics in a Low-density Plasma

Description: The problem with which this investigation is concerned is that of determining the steady-state and dynamic characteristics of the admittance of a metallic probe immersed in a laboratory plasma which has the low electron densities and low electron temperatures characteristic of the ionospheric plasma. The problem is separated into three related topics: the design and production of the laboratory plasma, the measurement of the steady-state properties of dc and very low frequency probe admittance, and the study of transient ion sheath effects on radio frequency probe admittance.
Date: December 1970
Creator: Bunting, William David

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Description: High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Date: May 1999
Creator: Venezia, Vincent C.

Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Description: The systematic study of the formation of β-SiC formed by low energy carbon ion (C-)implantation into Si followed by high temperature annealing is presented. The research is performed to explore the optimal annealing conditions. The formation of crystalline β-SiC is clearly observed in the sample annealed at 1100 °C for a period of 1 hr. Quantitative analysis is performed in the formation of β-SiC by the process of implantation of different carbon ion fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100°C for 1 hr. However, it is observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms /cm2. Above this fluence the amount of β-SiC appears to saturate. The stability of graphitic C-C bonds at 1100°C limits the growth of SiC precipitates in the sample implanted at a fluence of 8×1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study. Secondly, the carbon cluster formation process in silica and the characterization of formed clusters is presented. Silicon dioxide layers ~500 nm thick are thermally grown on a Si (100) wafer. The SiO2 layers are then implanted with 70 keV carbon ions at a fluence of 5×1017 atoms/cm2. The implanted samples are annealed 1100 °C for different time periods of 10 min., 30 min., 60 min., 90 min., and 120 min., in the mixture of argon and hydrogen gas (96 % Ar + 4% hydrogen). Photoluminescence spectroscopy reveals UV to visible emission from the samples. A detail mechanism of the photoluminescence and its possible origin is discussed ...
Date: May 2011
Creator: Poudel, Prakash Raj

Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Description: The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4 - 4.0 MeV, helium ions of energy 0.4 - 6.0 MeV, carbon ions of energy 4.5 - 11.3 MeV and oxygen ions of energy 4.5 - 13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4- O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.
Date: May 2011
Creator: Phinney, Lucas C.

Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

Description: The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR membrane. This SR/NIPA composite gel has promising attributes for wound dressing and other uses. Tissue-simulating optical phantom has been synthesized and studied using NIPA solution trapped inside a hydrogel. Polymer gels with engineered surface patterns were implemented. NIPA gel deposited on the surface of an acrylamide gel can be used as responsive gel display. A dynamically measurement technique of local shear modulus and swelling ratio of gel is presented based on an engineered periodic surface pattern as square array.
Date: December 2003
Creator: Wang, Changjie

Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics.

Description: In this work, I studied the hybrid system based on self-assembled guanosine crystal (SAGC) conjugated to wide-bandgap semiconductor gallium nitride (GaN). Guanosine is one of the four bases of DNA and has the lowest oxidation energy, which favors carrier transport. It also has large dipole moment. Guanosine molecules self-assemble to ribbon-like structure in confined space. GaN surface can have positive or negative polarity depending on whether the surface is Ga- or N-terminated. I studied SAGC in confined space between two electrodes. The current-voltage characteristics can be explained very well with the theory of metal-semiconductor-metal (MSM) structure. I-V curves also show strong rectification effect, which can be explained by the intrinsic polarization along the axis of ribbon-like structure of SAGC. GaN substrate property influences the properties of SAGC. So SAGC has semiconductor properties within the confined space up to 458nm. When the gap distance gets up to 484nm, the structure with guanosine shows resistance characteristics. The photocurrent measurements show that the bandgap of SAGC is about 3.3-3.4eV and affected by substrate properties. The MSM structure based on SAGC can be used as photodetector in UV region. Then I show that the periodic structure based on GaN and SAGC can have photonic bandgaps. The bandgap size and the band edges can be tuned by tuning lattice parameters. Light propagation and emission can be tuned by photonic crystals. So the hybrid photonic crystal can be potentially used to detect guanosine molecules. If guanosine molecules are used as functional linker to other biomolecules which usually absorb or emit light in blue to UV region, the hybrid photonic crystal can also be used to tune the coupling of light source to guanosine molecules, then to other biomolecules.
Date: August 2008
Creator: Li, Jianyou

A Calculation of the Kaon-Neutron Scattering Cross Section

Description: The purpose of this investigation was to study the scattering processes of K+ mesons with neutrons. In order to do such a study one must first make certain basic assumptions about the type of interaction involved and then proceed to calculate physically meaningful qualities which describe the processes. Thus, the problem is this: assuming the validity of Feynman's rules for these strongly interacting particles, calculate the differential and total scattering cross sections for the interaction of scalar K+ mesons and neutrons.
Date: June 1966
Creator: Hooper, Robert Gibson

Design and Testing of a Corona Column and a Closed Gas Distribution System for a Tandem Van de Graaff Voltage Generator

Description: The purpose of this study had been to design and test a corona column and an insulating gas distribution system for a small tandem Van de Graaff. The intent of this paper is to describe the gas handling system and to compare experimentally the effects of corona electrode shape on the corona current carried between adjacent sections of the column.
Date: June 1962
Creator: Gray, Thomas Jack

A Vacuum Tube for an Electrostatic Generator

Description: The purpose of this study has been to construct two accelerating tubes with small beam apertures for the Van de Graaff, modifying the prototype tube designed and tested by Wiley (20), to design and construct a vacuum system for evacuating the tubes, and to determine the characteristics of the tube under operating conditions while installed in the generator.
Date: August 1966
Creator: Pool, John Reginald