Search Results

Gamma Ray Distribution from Neutron Excitation in Cesium
The purpose of this investigation was to analyze the gamma rays resulting from excitation of Cs133 by the inelastic scattering of 14 MeV neutrons and to determine the relative intensity of each gamma ray.
Monte Carlo Calculations of Reflected Intensities for Real Spherical Atmospheres
To calculate the emergent radiation field, a realistic atmospheric model and algorithm must be developed. The radiation field may be characterized by the emergent intensities of scattered light. This is possible only if the algorithm determines these intensities as dependent upon atmospheric and angular parameters.
Solutions of the Equations of Radiative Transfer by an Invariant Imbedding Approach
This thesis is a study of the solutions of the equations of radiative transfer by an invariant imbedding approach.
Cross-Section at 15.6 and 16.1 MeV
The intent of this investigation is the determination of the values of the Cs-133 (n,2n)Cs-132 cross-section at neutron energies of 15.6 and 16.1 MeV. Neutrons of this energy are produced with comparative ease by means of the D-T reaction, in which deuterons of energy 500 and 750 keV, respectively, are impingent upon a tritium target.
Cross Section for the 165/Ho (n, 2n) 164/Ho Reaction at 15.6 MeV
It was the purpose of this investigation to bring together the ideas and procedures involved in the measurement of (n, 2n) reaction cross sections. Some of the inherent properties of the material under investigation (Holium) are involved in determining these relationships.
Electron Spin Resonance Absorption in Benzophenone Phenylhydrazone Negative Ion
This thesis reports an electron spin resonance absorption study of the hyperfine interaction between nuclei and a single "nearly-free" electron in dilute solutions of the benzophenone phenylhydrazone free radical in tetrahydrofuran.
Magnetomorphic Oscillations in Cadmium Cylinders
The work presented here is an experimental investigation of the effect of cylindrical geometry on electrical conductivity, in which single-crystal samples of cadmium at the temperature of liquid helium are used, with the diameter on the order of the electron mean free path.
Microwave Cavity Method for Measuring Plasma Properties
This discussion is concerned primarily with communications blackout during spacecraft entry into a planetary atmosphere. The gas in the shock layer, between shock wave and vehicle surface, ionizes from the intense heating which takes place in the bow shock wave and a viscous region of high gas enthalpy. This ionization may persist throughout the subsequent flow over the vehicle and into the wake, thus completely engulfing the vehicle and its communications elements. The problem will be to simulate a plasma model that will be of interest for hypervelocity reentry vehicles and to provide meaningful expressions for the various plasma parameters of interest (electron density, electron temperature, collision frequency, etc.) in terms of the microwave measurables (amplitude, phase shifts, frequency shifts, polarization, etc.)
Recombination Rate Coefficient Measurements in the Helium Afterglow
This thesis describes a method of determining the recombination rate coefficient experimentally, which does not depend on a specific model of the recombination process. With this method established, results are presented for the recombination rate coefficient measurements at 44.6 Torr.
Size Dependence in the Electrical Conductivity of Bismuth
In the present investigation, measurements were made at liquid-helium temperatures on single-crystal bismuth samples which had a stair-step geometry in order to study several thicknesses during one helium run. These samples were also thinned to extend the thickness range of the steps to a thinner region. In addition J.E. Parrott's theory is extended to include a diagonal anisotropic relaxation-time tensor and the effect of holes on the size effect. A discussion of the theory of Parrott, and the extension of Parrott's theory in connection with the experimental results is presented.
Temperature Dependence of Line Widths of the Inversion Spectra of Ammonia
One of the purposes of this work is to investigate modifications that have to be made to a standard source-modulation microwave spectrograph so that it can be used to study gases at various temperatures. Another objective in this work is to determine experimentally the function of temperature that describes how the line widths of microwave spectral lines vary with changing temperature. The most important segment of the study is the temperature dependence of the line width since from an accurate knowledge of this temperature dependence one is able to determine what molecular force fields are present and the relative importance of parts of the molecular force field.
Back to Top of Screen