UNT Libraries - 297 Matching Results

Search Results

Studies of Charged Particle Dynamics for Antihydrogen Synthesis

Description: Synthesis and capture of antihydrogen in controlled laboratory conditions will enable precise studies of neutral antimatter. The work presented deals with some of the physics pertinent to manipulating charged antiparticles in order to create neutral antimatter, and may be applicable to other scenarios of plasma confinement and charged particle interaction. The topics covered include the electrostatic confinement of a reflecting ion beam and the transverse confinement of an ion beam in a purely electrostatic configuration; the charge sign effect on the Coulomb logarithm for a two component (e.g., antihydrogen) plasma in a Penning trap as well as the collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length; and the formation of magnetobound positronium and protonium.
Date: December 2014
Creator: Correa, Jose Ricardo

Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Description: The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the electrical conductivity and changes in the short and mid-range order resulting from the passivation of defects by hydrogen and the creation of trap states by boron. This work was done under the ARO grant W911NF-10-1-0410, William W. Clark Program Manager. The samples were provided by L-3 Communications.
Date: December 2014
Creator: Shrestha, Kiran (Engineer)

Relaxation Time Measurements for Collision Processes in the Surface Layers of Conductors and Semiconductors Near 10 Ghz

Description: This thesis represents one phase of a joint effort of research on the properties of liquids and solids. This work is concerned primarily with the microwave properties of solids. In this investigation the properties exhibited by conductor and semiconductor materials when they are subjected to electromagnetic radiation of microwave frequency are studied. The method utilized in this experiment is the perturbation of a resonant cavity produced by introduction of a cylindrically shaped sample into it.
Date: December 1973
Creator: Childress, Larry Wayne

Microwave Line Widths of the Asymmetric Top Formic Acid Molecule

Description: This work consisted of an experimental investigation of the formic acid (HCOOH) molecule's rotational spectrum. Measurements of line widths were obtained for J = 5, 12, 13, 19, and 20 for a pressure range from 1 to 10 microns. A linear behavior between Av and p was observed as predicted by theory. The line width parameter Avp was observed to depend on the quantum number J. Hard sphere collision diameters b1 were calculated using the obtained AvP values. These deduced hard sphere values were found to be larger than the physical size of the molecule. This result was found to be in general agreement with other investigation in which long range forces (dipole-dipole) dominate.
Date: August 1974
Creator: Maynard, Wayne R.

Effects of Discharge Tube Geometry on Plasma Ion Oscillations

Description: This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.
Date: May 1975
Creator: Simmons, David Warren

The Classical Limit of Quantum Mechanics

Description: The Feynman path integral formulation of quantum mechanics is a path integral representation for a propagator or probability amplitude in going between two points in space-time. The wave function is expressed in terms of an integral equation from which the Schrodinger equation can be derived. On taking the limit h — 0, the method of stationary phase can be applied and Newton's second law of motion is obtained. Also, the condition the phase vanishes leads to the Hamilton - Jacobi equation. The secondary objective of this paper is to study ways of relating quantum mechanics and classical mechanics. The Ehrenfest theorem is applied to a particle in an electromagnetic field. Expressions are found which are the hermitian Lorentz force operator, the hermitian torque operator, and the hermitian power operator.
Date: December 1977
Creator: Hefley, Velton Wade

Automatic Frequency Control of Microwave Radiation Sources

Description: Resonant cavity controlled klystron frequency stabilization circuits and quartz-crystal oscillator frequency stabilization circuits were investigated for reflex klystrons operating at frequencies in the X-band range. The crystal oscillator circuit employed achieved better than 2 parts in 10 in frequency stability. A test of the functional properties of the frequency standard was made using the Stark effect in molecules.
Date: August 1979
Creator: Payne, Bobby D.

A Calculation of the Excitation Spectrum of Superfluid Helium-4

Description: The Hartree-Fock-Bogoliubov theory of homogeneous boson systems at finite temperatures is rederived using, a free energy variational principle. It is shown that a t-matrix naturally emerges in the theory. Phenomenological modifications are made (1) to remove the energy gap at zero momentum, and (2) to eliminate the Hartree-Fock-like terms, which dress the kinetic energy of the particle. A numerical calculation of the energy spectrum is made over a temperature range of 0.00 to 3.14 K using the Morse dipole-dipole-2 potential and the Frost-Musulin potential. The energy spectrum of the elementary excitations is calculated self-consistently. It has a phonon behavior at low momentum and a roton behavior at higher momentum, so it is in qualitative agreement with the observed energy spectrum of liquid He II. However, the temperature dependence of the spectrum is incorrectly given. At the observed density of 0.0219 atoms A-3, the depletion of the zero-momentum state at zero temperature is 40.5% for the Morse dipole-dipole-2potential, and 43.2% for the Frost- Musulin potential. The depletion increases gradually until at 3.14 K the zero momentum density becomes zero discontinuously, which indicates a transition to the ideal Bose gas.
Date: May 1974
Creator: Goble, Gerald W.

Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe

Description: The frequency shifts and Q changes of a resonant microwave cavity were utilized as a basis for determining microwave properties of solids and liquids. The method employed consisted of varying the depth of penetration of a cylindrical sample of the material into a cavity operating in the TM0 1 0 Mode. The liquid samples were contained in a thin-walled quartz tube. The perturbation of the cavity was achieved by advancing the sample into the cavity along the symmetry axis by employing a micrometer drive appropriately calibrated for depth of penetration of the sample. A differentiation method was used to obtain the half-power points of the cavity resonance profile at each depth of penetration. The perturbation techniques for resonant cavities were used to reduce the experimental data obtained to physical parameters for the samples. The probing frequency employed was near 9 gHz.
Date: May 1974
Creator: Hong, Ki H.

K-Shell Ionization Cross Sections of Selected Elements from Ag to La for Proton Bombardment from 0.6 to 2.0 MeV

Description: The K-shell x-ray and ionization cross sections are measured for protons on Ag, Cd, Sn, Sb, Te, Ba, and La over the ion energy range of 0.6 to 2.0 MeV. The data are compared to the predictions of the PWBA, the PWBA with corrections for binding energy and/or Coulomb deflection, the BEA, and the constrained BEA predictions. In general, the non-relativistic PWBA with binding energy correction gives the best overall agreement with the measurements of proton-induced x-ray processes for the K-shell of the elements studied in this work. The data further suggest the need for relativistic PWBA treatment of the interactions in the K-shell for the range of binding energies represented by the elements investigated in this work.
Date: May 1974
Creator: Khelil, Najat Arafat

Test of Gauge Invariance: Charged Harmonic Oscillator in an Electromagnetic Field

Description: The gauge-invariant formulation of quantum mechanics is compared to the conventional approach for the case of a one-dimensional charged harmonic oscillator in an electromagnetic field in the electric dipole approximation. The probability of finding the oscillator in the ground state or excited states as a function of time is calculated, and the two approaches give different results. On the basis of gauge invariance, the gauge-invariant formulation of quantum mechanics gives the correct probability, while the conventional approach is incorrect for this problem. Therefore, expansion coefficients or a wave function cannot always be interpreted as probability amplitudes. For a physical interpretation as probability amplitudes the expansion coefficients must be gauge invariant.
Date: August 1980
Creator: Wen, Chang-tai

Shubnikov-de Haas Effect Under Uniaxial Stress: A New Method for Determining Deformation Potentials and Band Structure Information in Semiconductors

Description: The problem with which this investigation is concerned is that of demonstrating the applicability of a particular theory and technique to two materials of different band structure, InSb and HgSe, and in doing so, determining the deformation potentials of these materials. The theory used in this investigation predicts an inversion-asymmetry splitting and an anisotropy of the Fermi surface under uniaxial stress. No previous studies have ever verified the existence of an anisotropy of the Fermi surface of semiconductors under stress. In this work evidence will be given which demonstrates this anisotropy. Although the inversion-asymmetry splitting parameter has been determined for some materials, no value has ever been reported for InSb. The methods presented in this paper allow a value of the splitting parameter to be determined for InSb.
Date: December 1972
Creator: Hathcox, Kyle Lee

A Technique for Increasing the Optical Strength of Single-Crystal NaCl and KCl Through Temperature Cycling

Description: This thesis relates a technique for increasing the optical strength of NaCl and KCl single-crystal samples. The 1.06-μm pulsed laser damage thresholds were increased by factors as large as 4.6 for a bulk NaCl single-crystal sample. The bulk laser damage breakdown threshold (LDBT) of the crystal was measured prior to and after heat treatment at 800*C using a Nd:YAG laser operating at 1.06 μm. Bulk and surface LDBTs were also studied on samples annealed at 400° C. These samples showed differences in damage morphology on both cleaved and polished surfaces, and the cleaved surfaces had improved damage thresholds. However, neither the polished surfaces nor the bulk showed improved threshold at the lower annealing temperature.
Date: May 1983
Creator: Franck, Jerome B. (Jerome Bruce)

A Theoretical Investigation of Bound Roton Pairs in Superfluid Helium-4

Description: The Bogoliubov theory of excitations in superfluid helium is used to study collective modes at zero temperature. A repulsive delta function shell potential is used in the quasiparticle excitation energy spectrum to fit the observed elementary excitation spectrum, except in the plateau region. The linearized equation of motion method is used to obtain the secular equation for a collective mode consisting of a linear combination of one and two free quasiparticles of zero total momentum. It is shown that in this case for high-lying collective modes, vertices involving three quasiparticles cancel, and only vertices involving four quasiparticles are important. A decomposition into various angular momentum states is then made. Bound roton pairs in the angular momentum D-state observed in light-scattering experiments exist only for an attractive coupling between helium atoms in this oversimplified model. Thus, the interaction between particles can be reinterpreted as a phenomenological attractive coupling between quasiparticles, in order to explain the Raman scattering from bound roton pairs in superfluid helium.
Date: August 1974
Creator: Cheng, Shih-ta

Proton-Induced L-shell X-Rays of Pr, Sm, Eu, Gd, and Dy

Description: Characteristic L-shell x rays of the five rare earths Pr, Sm, Eu, Gd, and Dy were studied in this work. The x rays were produced by ionization from 0.3 to 2.0 MeV protons from the 2.0 MV Van de Graaff at North Texas State University. Total L-shell ionization and x-ray production cross sections were measured for Sm and compared to the BEA, CBEA and PWBA theories. Total L-shell ionization cross sections were measured for Pr, Eu, Gd, and Dy and compared to the BEA, CBEA, and PWBA. The CBEA and PWBA fit the samarium data well for both ionization and x-ray production cross sections. The BEA was generally 40 per cent lower than the data. The CBEA and the PWBA also fit the ionization cross section data for Pr, Eu, Gd and Dy, while the BEA was generally 40 per cent lower than the data.
Date: August 1974
Creator: Abrath, Frederick G.

K-Shell Ionization Cross Sections of Selected Elements from Fe to As for Proton Bombardment from 0.5 to 2.0 MeV

Description: The problem with which this investigation is concerned is that of making experimental measurements of proton-induced K-shell x-ray production cross sections and to study the dependence of these cross sections upon the energy of the incident proton. The measurements were made by detection of the characteristic x-rays emitted as a consequence of the ionization of the K-shell of the atom. The method for relating this characteristic x-ray emission to the x-ray production cross section is discussed in this work.
Date: December 1973
Creator: Lear, Richard Dean

Collision Broadening in the Microwave Rotational Spectrum of Gaseous Monomeric Formaldehyde

Description: A source-modulation microwave spectrograph was utilized to measure line width parameters for several spectral lines in the pure rotational spectrum of formaldehyde (H₂CO). The spectrograph featured high-gain ac amplification and phase-sensitive detection, and was capable of measuring microwave lines having absorption coefficients as small as 10⁻⁷ cm⁻¹ with a frequency resolution on the order of 30 kHz. Center frequencies of the measured lines varied from 4,830 MHz to 72,838 MHz; hence, most of the observations were made on transitions between K-doublets in the rotational spectrum. Corrections were applied to the measured line width parameters to account for Doppler broadening and, where possible, for deviations due to magnetic hyperfine structure in some of the K-doubled lines. Low modulation voltages and low microwave power levels were used to minimize modulation and saturation broadenings; other extraneous broadenings were found to be insignificant. The primary broadening mechanism at low gas pressure is pressure broadening, and a review of this topic is included. Line width parameters for the several observed transitions were determined by graphing half-widths versus pressure for each spectral line, and performing a linear least-squares fit to the data points. Repeatability measurements indicated the accuracy of the line width parameters to be better than ±10 percent. The reasons for this repeatability spread are discussed, Broadening of each line was measured for self- and foreign-gas broadening by atomic helium and diatomic hydrogen. Effective collision diameters were calculated for each broadening interaction, based on the observed rates of broadening.
Date: December 1973
Creator: Rogers, David Valmore

Synthesis, Characterization, Structural, and Optical Properties of Zinc Oxide Nanostructures Embedded in Silicon Based Substrates

Description: Structural and optical properties of ZnO nanostructures synthesized by low energy ion implantation technique were examined. ZnO molecular ions were implanted into Si/SiO2 substrates at room temperature and then furnace annealed under different temperatures and environments. In all as-implanted samples only Zn nanostructures with varying diameters distributed into the Si/SiO2 matrices were observed. No trace of ZnO was found. The distributions of Zn nanostructures in Si/SiO2 closely matched results from Stopping and Range of Ions in Matter (SRIM) simulations. During annealing at 750 oC, Zn diffused both toward and away from the surface of the substrate and combine with oxygen to form ZnO nanostructures. At higher annealing temperatures ZnO bonding started to break down and transfer to zinc silicate (Zn2SiO4), and at 900 oC the ZnO was completely converted into Zn2SiO4. The average sizes of Zn/ZnO nanostructures depended on the ion fluence. If the fluence increased the average sizes of nanostructures also increased and vice versa. For room temperature photoluminescence (RT-PL), band-edge emission in the ultraviolet (UV) region was observed from all samples annealed at 700 oC/750 oC and were slightly blue shifted as compare to bulk ZnO. Donor-bound exciton (D,X) and acceptor-bound exciton (A,X) transitions were observed in low temperature photoluminescence (PL). The lifetime of both donor-bound excitonic emission (D, X) and acceptor-bound excitonic emission (A, X) were found to be in the picosecond (ps) range.
Date: May 2014
Creator: Pandey, Bimal

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of ...
Date: May 2014
Creator: Pacheco, Josè L.

The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to a graphene defect is easier to be split than that of the case of no defect existing and (2) there are a series of meta-stable partially disassociated states for an interfacial water molecule. Calculated disassociation energies are from 2.5 eV to 4.6 eV, that match the experimental observation range of light wavelength from visible to 254 nm UV light under which the resistivity of CVD-grown graphene is increased.
Date: May 2014
Creator: Mo, Yudong

Synthesis Strategies and a Study of Properties of Narrow and Wide Band Gap Nanowires

Description: Various techniques to synthesize nanowires and nanotubes as a function of growth temperature and time were investigated. These include growth of nanowires by a chemical vapor deposition (CVD) system using vapor-liquid-solid (VLS) growth mechanism and electro-chemical synthesis of nanowires and nanotubes. Narrow band gap InSb Eg = 0.17 eV at room temp) nanowires were successively synthesized. Using a phase diagram, the transition of the nanowire from metallic- semiconducting- semi-metallic phase was investigated. A thermodynamic model is developed to show that the occurrence of native defects in InSb nanowires influenced by the nanowire growth kinetics and thermodynamics of defect formation. Wide band gap ZnO (Eg = 3.34 eV) and In2O3 (3.7 eV) were also synthesized. ZnO nanowires and nanotubes were successfully doped with a transition metal Fe, making it a Dilute Magnetic Semiconductor of great technological relevance. Structural and electronic characterizations of nanowires were studied for different semiconducting, metallic and semi-metallic nanowires. Electron transport measurements were used to estimate intrinsic material parameters like carrier concentration and mobility. An efficient gas sensing device using a single In2O3 nanowire was studied and which showed sensitivity to reducing gas like NH3 and oxidizing gas like O2 gas at room temperature. The efficiency of the gas sensing device was found to be sensitive to the nature of contacts as well as the presence of surface states on the nanowire.
Date: May 2014
Creator: Sapkota, Gopal

Effects of Quantum Coherence and Interference

Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar

How Cooperative Systems Respond to External Forces

Description: Cooperative interactions permeate through nature, bringing about emergent behavior and complexity. Using a simple cooperative model, I illustrate the mean field dynamics that occur at the critical point of a second order phase transition in the framework of Langevin equations. Through this formalism I discuss the response, both linear and nonlinear, to external forces. Emphasis is placed on how information is transferred from one individual to another in order to facilitate the collective response of the cooperative network to a localized perturbation. The results are relevant to a wide variety of systems, ranging from nematic liquid crystals, to flocks and swarms, social groups, and neural networks.
Date: May 2014
Creator: Svenkeson, Adam

Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Description: Semi-conductor industry relies heavily on silicon (Si). However, Si is not a direct-band gap semi-conductor. Consequently, Si does not possess great versatility for multi-functional applications in comparison with the direct band-gap III-V semi-conductors such as GaAs. To bridge this gap, what is ideally required is a semi-conductor material system that is based on silicon, but has significantly greater versatility. While sparsely studied, the semi-conducting silicides material systems offer great potential. Thus, I focused on the growth and structural characterization of ruthenium silicide and osmium silicide material systems. I also characterized iron silicon germanide films using extended x-ray absorption fine structure (EXAFS) to reveal phase, semi-conducting behavior, and to calculate nearest neighbor distances. The choice of these silicides material systems was due to their theoretically predicted and/or experimentally reported direct band gaps. However, the challenge was the existence of more than one stable phase/stoichiometric ratio of these materials. In order to possess the greatest control over the growth process, molecular beam epitaxy (MBE) has been employed. Structural and film quality comparisons of as-grown versus annealed films of ruthenium silicide are presented. Structural characterization and film quality of MBE grown ruthenium silicide and osmium silicide films via in situ and ex situ techniques have been done using reflection high energy electron diffraction, scanning tunneling microscopy, atomic force microscopy, cross-sectional scanning electron microscopy, x-ray photoelectron spectroscopy, and micro Raman spectroscopy. This is the first attempt, to the best of our knowledge, to grow osmium silicide thin films on Si(100) via the template method and compare it with the regular MBE growth method. The pros and cons of using the MBE template method for osmium silicide growth are discussed, as well as the structural differences of the as-grown versus annealed films. Future perspectives include further studies on other semi-conducting silicides material systems in terms ...
Date: December 2013
Creator: Elmarhoumi, Nader M.