Search Results

open access

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Description: The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography… more
Date: August 1999
Creator: Bernhard, John Michael
open access

Photoelectric Emission Measurements for CVD Grown Polycrystalline Diamond Films

Description: We examined CVD grown polycrystalline diamond films having different methane concentrations to detect defects and study the possible correlation between the methane concentration used during the growth process and the defect density. SEM and Raman results show that the amorphous and sp2 carbon content of the films increases with methane concentration. Furthermore, photoelectric emission from diamond is confirmed to be a two-photon process, hence the electrons are emitted from normally unoccupie… more
Date: August 1999
Creator: Hassan, Tarek
open access

Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors

Description: Generally, nonlinear optics studies investigate optically-induced changes in refraction or absorption, and their application to spectroscopy or device fabrication. The photorefractive effect is a nonlinear optical effect that occurs in solids, where transport of an optically-induced free-carrier population results in an internal space-charge field, which produces an index change via the linear electrooptic effect. The photorefractive effect has been widely studied for a variety of materials and… more
Date: August 1999
Creator: Stark, Thomas S.

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Description: Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunic… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Chen, Yandong
open access

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and… more
Date: May 2000
Creator: Guo, Baonian

Growing carbon nanotubes by chemical vapor deposition technique.

Description: Carbon nanotubes were synthesized in the laboratory using chemical vapor deposition at different methane concentration. I found that a methane concentration of 4 sccm was ideal for well recognizable carbon nanotubes. A higher concentration led to fewer nanotube growth and silicon carbide structure. Coating the sample first with Fe(NO3)3 created a catalyst base on the substrate for the nanotube to adhere and grow on.
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Rajan, Harihar V.

Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

Description: Atomic resolution images of hot-tungsten filament chemical-vapor-deposition (CVD) grown epitaxial diamond (100) films obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM) are reported. A (2x1) dimer surface reconstruction and amorphous atomic regions were observed on the hydrogen terminated (100) surface. The (2x1) unit cell was measured to be 0.51"0.01 x 0.25"0.01 nm2. The amorphous regions were identified as amorphous carbon. After CVD growth, the surface of the epita… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Stallcup, Richard E.
open access

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonan… more
Date: August 2000
Creator: Bigelow, Alan W.
open access

Nested Well Plasma Traps

Description: Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation times… more
Date: August 2000
Creator: Dolliver, Darrell
open access

Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

Description: Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is … more
Date: August 2000
Creator: Stephens, Kenneth Frank

The Stopping of Energetic Si, P and S Ions in Ni, Cu, Ge and GaAs Targets

Description: Accurate knowledge of stopping powers is essential for these for quantitative analysis and surface characterization of thin films using ion beam analysis (IBA). These values are also of interest in radiobiology and radiotherapy, and in ion- implantation technology where shrinking feature sizes puts high demands on the accuracy of range calculations. A theory that predicts stopping powers and ranges for all projectile-target combinations is needed. The most important database used to report the … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Nigam, Mohit

Microwave Cavity Test for Superconductivity

Description: The first part of this paper describes the Meissner effect in superconductors which serves as the most definitive evidence for superconductivity. It is shown that the microwave perturbation technique may be used to demonstrate this effect. By measuring the changes of resonant frequency and inverse quality factor Q of a microwave cavity with a small volume of sample loading, the Meissner effect can be shown by using the Slater perturbation equation. The experimental system is described with deta… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Tang, Shan
open access

A Statistical Study of Hard X-Ray Solar Flares

Description: The results of a statistical study of hard x-ray solar flares are presented in this dissertation. Two methods of analysis were used, the Diffusion Entropy (DE) method coupled with an analysis of the data distributions and the Rescaled Range (R/S) Method, sometimes referred to as "Hurst's method". Chapter one provides an introduction to hard x-ray flares within the context of the solar environment and a summary of the statistical paradigms solar astronomers currently work under. Chapter two pres… more
Date: December 2001
Creator: Leddon, Deborah L.
open access

An entropic approach to the analysis of time series.

Description: Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are base… more
Date: December 2001
Creator: Scafetta, Nicola
open access

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fractio… more
Date: May 2002
Creator: Abbott, Patrick Roland
open access

Theoretical Study of Second Harmonic Generation of a Blue Laser at 486 nm Using a BBO Crystal in a Standing Wave Buildup Cavity

Description: For a spectroscopy purpose, we are interested in producing continuous wave (CW) UV laser light at 243 nm with at least 2 mW power. The theory of nonlinear optics suggests that we should be able to produce a desired 2.9 mW of 243 nm light by second harmonic generation (SHG) from a 50 mW blue laser at 486 nm using a BBO crystal in a build up cavity. The most important physical parameters are calculated. A 10 mm Brewster cut BBO crystal can provide phase matching conditions for coupling two … more
Date: May 2002
Creator: Khademian, Ali
open access

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (… more
Date: May 2002
Creator: Wadhawan, Atul

Approach to Quantum Information starting from Bell's Inequality (Part I) and Statistical Analysis of Time Series Corresponding to Complex Processes (Part II)

Description: I: Quantum information obeys laws that subtly extend those governing classical information, making possible novel effect such as cryptography and quantum computation. Quantum computations are extremely sensitive to disruption by interaction of the computer with its environment, but this problem can be overcome by recently developed quantum versions of classical error-correcting codes and fault-tolerant circuits. Based on these ideas, the purpose of this paper is to provide an approach to quantu… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2002
Creator: Failla, Roberto
open access

Application of the Finite Element Method to Some Simple Systems in One and Two Dimensions.

Description: The finite element method (FEM) is reviewed and applied to the one-dimensional eigensystems of the isotropic harmonic oscillator, finite well, infinite well and radial hydrogen atom, and the two-dimensional eigensystems of the isotropic harmonic oscillator and the propagational modes of sound in a rectangular cavity. Computer codes that I developed were introduced and utilized to find accurate results for the FEM eigensolutions. One of the computer codes was modified and applied to the one-dime… more
Date: May 2002
Creator: Hunnell, Jason C.

Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator.

Description: The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioact… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2002
Creator: Rosencranz, Daniela Necsoiu
open access

Complexity as Aging Non-Poisson Renewal Processes

Description: The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter … more
Date: May 2007
Creator: Bianco, Simone
open access

Fractional Brownian motion and dynamic approach to complexity.

Description: The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power … more
Date: August 2007
Creator: Cakir, Rasit
open access

Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Description: A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomater… more
Date: August 2007
Creator: Anand, Aman
open access

The Dynamic Foundation of Fractal Operators.

Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation … more
Date: May 2003
Creator: Bologna, Mauro
Back to Top of Screen