UNT Libraries - 37 Matching Results

Search Results

L- and M-Shell X-Ray Production Cross Sections of Neodymium Gadolinium, Holmium, Ytterbium, Gold and Lead by 25-MeV Carbon and 32-MeV Oxygen Ions

Description: L- and M-shell x-ray production cross sections have been measured for thin solid targets of neodymium, gadolinium, holmium, ytterbium, gold, and lead by 25 MeV 12/6C^q+ (q=4,5,6) and by 32 MeV 16/8O^q+ (q=5,7,8). The cross sections were determined from measurements made with thin targets (< 2.5 μg/cm2). For projectiles with one or two K-shell vacancies, the target x-ray production cross sections were found to be enhanced over those for projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) plus electron capture (EC) to the L, M, N... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories, i.e., plane wave Born approximation for DI and Oppenheimer-Brinkman-Kramers formula of Nikolaev for EC and to the ECPSSR approach that accounts for Energy loss and Coulomb deflection of the projectile as well as for Relativistic and Perturbed Stationary States of inner shell electrons.
Date: August 1987
Creator: Andrews, Mike C., 1949-

Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact

Description: Absolute K-shell x-ray cross sections and Auger-electron cross sections are measured for carbon for 0.6 to 2.0 MeV proton incident on CH₄, n-C₄H₁₀ (n-Butane), i-C₄H₁₀ (isobutane), C₆H₆ (Benzene), C₂H₂ (Acetylene), CO and CO₂. Carbon K-shell fluorescence yields are calculated from the measurements of x-ray and Auger-electron cross sections. X-ray cross sections are measured using a variable geometry end window proportional counter. An alternate method is described for the measurement of the transmission of the proportional counter window. Auger electrons are detected by using a constant transmission energy Π/4 parallel pi ate electrostatic analyzer. Absolute carbon K-shell x-ray cross sections for CH₄ are compared to the known results of Khan et al. (1965). Auger-electron cross sections for proton impact on CH₄ are compared to the known experimental values of RΦdbro et al. (1979), and to the theoretical predictions of the first Born and ECPSSR. The data is in good agreement with both the first Born and ECPSSR, and within our experimental uncertainties with the measurements of RΦdbro et al. The x-ray cross sections, Auger-electron cross sections and fluorescence yields are plotted as a function of the Pauling charge, and show significant variations. These changes in the x-ray cross sections are compared to a model based on the number of electrons present in the 2s and 2p sub shells of these carbon based molecules. The changes in the Auger-electron cross sections are compared to the calculations of Matthews and Hopkins. The variation in the fluorescence yield is explained on the basis of the multiconfiguration Dirac-Fock model.
Date: August 1986
Creator: Bhalla, Raj P. (Raj Pal), 1948

Coherent Resonant Interaction and Harmonic Generation in Atomic Vapors

Description: This work examines the use of higher order multiphoton resonances in higher harmonic generation together with judicious exploitation of coherent interaction properties to achieve efficient harmonic generation. A detailed experimental study on third harmonic generation in two photon resonant coherent interaction and a theoretical study on four photon resonant coherent interaction have been conducted. Two photon resonant coheren propagation in lithium vapor (2S-4S and 2S-3D interaction) has been studied in detail as a function of phase and delay of the interacting pulse sequence. Under coherent lossless propagation of 90 phase shifted pulse pair, third harmonic generation is enhanced. A maximum energy conversion efficiency of 1% was measured experimentally. This experiment shows that phase correlated pulse sequence can be used to control multiphoton coherent resonant effects. A larger two photon resonant enhancement does not result in more efficient harmonic generation, in agreement with the theoretical prediction. An accurate (to at least 0.5 A°) measurement of intensity dependent Stark shift has been done with the newly developed "interferometric wavemeter." Stark shifts as big as several pulse bandwidths (of picosecond pulses) result in a poor tuning of multiphoton resonance and become a limiting factor of resonant harmonic generation. A complete theory has been developed for harmonic generation in a four photon resonant coherent interaction. A numerical application of the theory to the Hg atom successfully interprets the experimental observations in terms of the phase dependent stimulated Raman scattering. With the intensity required for four photon resonant transition, the calculation predicts a dramatic Stark shift effect which completely destroys the resonance condition. This model provides a basis for the development of future schemes for efficient higher order coherent upconversion.
Date: August 1987
Creator: Mukherjee, Nandini

A Collisional Mechanism in the Ion-Solid Interaction Which Enhances Scattering Yields Near 180⁰

Description: In the course of experiments using uniaxial double alignment channeling to investigate radiation damage in single crystals, an anomalously large ion-scattering yield from the near surface of disordered or simulated disordered solid targets was observed. The chronology of the discovery of this new ion-solid effect and its explanation are presented along with experiments detailing the dependence of the new effect upon ion type and energy, as well as target atomic number and density. Targets included a spectrum of polycrystalline elemental targets in a range Z = 29 to Z = 82. Also, the influence of the effect upon scattering yields from an aligned Au(110) single crystal is demonstrated.
Date: December 1980
Creator: Holland, Orin Wayne

A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States

Description: The energy states of C₃ᵥ symmetric top polyatomic molecules were studied. Both classical and quantum mechanical methods have been used to introduce the energy states of polyatomic molecules. Also, it is shown that the vibration-rotation spectra of polyatomic molecules in the ground and excited vibrational states can be predicted by group theory. A comprehensive model for predicting rotational frequency components in various v₁₀ vibrational levels of propyne was developed by using perturbation theory and those results were compared with other formulas for C₃ᵥ symmetric top molecules. The v₁₀=1,2,3 and ground rotational spectra of propyne in the frequency range 17-70 GHz have been reassigned by using the derived comprehensive model. The v₁₀=3 and v₁₀=4 rotational spectra of propyne have been investigated in the 70 GHz, and 17 to 52 GHz regions, respectively, and these spectral components assigned using the comprehensive model. Molecular constants for these vibrationally excited states have been determined from more than 100 observed rotational transitions. From these experimentally observed components and a model based upon first principles for C₃ᵥ symmetry molecules, rotational constants have been expressed in a form which enables one to predict rotational components for vibrational levels for propyne up to v₁₀=5. This comprehensive model also appears to be useful in predicting rotational components in more highly excited vibrational levels but data were not available for comparison with the theory. Several techniques of assignment of rotational spectra for each excited vibrational state are discussed. To get good agreement between theory and experiment, an additional term 0.762(J+1) needed to be added to Kℓ=1 states in v₁₀=3. No satisfactory theoretical explanation of this term has been found. Experimentally measured frequencies for rotational components for J→(J+1)=+1 (0≤J≤3) in each vibration v₁₀=n (0≤n≤4) are presented and compared with those calculated using the results of basic perturbation theory. The v₉=2 rotational ...
Date: December 1986
Creator: Rhee, Won Myung

Degenerate Four Wave Mixing of Short and Ultrashort Light Pulses

Description: This dissertation presents experimental and theoretical studies of transient degenerate four wave mixing (DFWM) in organic dyes. Chapter 1 is an introduction to DFWM. Chapter 2 describes DFWM experiments that were performed in the gain medium of a dye laser. Chapter 3 presents the theory of DFWM of short pulses in three level saturable media. Chapter 4 presents DFWM experiments of femtosecond pulses in the saturable absorber of a passively modelocked ring dye laser. Chapter 5 presents the theory of DFWM of ultrashort pulses in resonant media.
Date: August 1984
Creator: McMichael, Ian C. (Ian Charles)

Detection of the Resonant Vibration of the Cellular Membrane Using Femtosecond Laser Pulses

Description: An optical detection technique is developed to detect and measure the resonant vibration of the cellular membrane. Biological membranes are active components of living cells and play a complex and dynamic role in life processes. They are believed to have oscillation modes of frequencies in the range of 1 to 1000 GHz. To measure such a high-frequency vibration, a linear laser cavity is designed to produce a train of femtosecond pulses of adjustable repetition rate. The method is then directly applied to liposomes, "artificial membrane", stained with a liphophilic potential sensitive dye. The spectral behavior of a selection of potential sensitive dyes in the membrane is also studied.
Date: December 1989
Creator: Jamasbi, Nooshin

Dispersion of the Nonlinear Refractive Index of CS₂ in the Spectral Range of 9-11 μm

Description: The nonlinear refractive index (n2) of room temperature liquid CS2 in the wavelength range of 9 to 11 micrometers is measured. A line tunable hybrid C02 TEA laser and amplifier system is used for the experiments. In these measurements the well known photoacoustic method is utilized to observe the onset of whole beam self-focusing. The photoacoustic signal in a CS2 cell, much longer than the confocal parameter, is monitored. The departure of the acoustic signal from linear growth marks the critical power for the onset of nonlinearity. It is experimentally verified that the phenomenon is power dependent as expected from self-focusing theory. The value of n2 is then calculated from the theoretical model of self focusing. Measurements of the on-axis irradiance transmitted through the nonlinear material as well as the measurements of beam distortion are used to verify the validity of the photoacoustic method. In all the measurements the on-axis intensity was smaller than the calculated threshold intensity for stimulated Brillouin scattering. The back reflection was monitored to make sure that stimulated Brillouin scattering was not playing a role in the phenomenon.
Date: May 1987
Creator: Mohebi, Mehrdad

The Effect of Intervalence-Band Absorption, Auger Recombination, Surface Recombination, Diffusion and Carrier Cooling on the Picosecond Dynamics of Laser-Induced Plasmas in Germanium

Description: The picosecond optical response of germanium is investigated by performing excitation-probe experiments on a thin, intrinsic-germanium wafer maintained at 135 K. The results of three distinct experiments are reported: (1) the transmission of a single pulse is measured as a function of irradiance, (2) the probe transmission is measured at a fixed time after excitation as a function of the excitation energy, and (3) the transmission of a probe pulse is monitored as a function of time after excitation. These experiments employ 10-picosecond laser pulses at 1.06 um and Stokes-shifted pulses at 1.55-um.
Date: May 1983
Creator: Lindle, James Ryan

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Description: Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Date: May 1986
Creator: Toten, Arvel D.

Field Dependence of Optical Properties in Quantum Well Heterostructures Within the Wentzel, Kramers, and Brillouin Approximation

Description: This dissertation is a theoretical treatment of the electric field dependence of optical properties such as Quantum Confined Stark (QCS) shifts, Photoluminescence Quenching (PLQ), and Excitonic Mixing in quantum well heterostructures. The reduced spatial dimensionality in heterostructures greatly enhances these optical properties, more than in three dimensional semiconductors. Charge presence in the quantum well from doping causes the potential to bend and deviate from the ideal square well potential. A potential bending that varies as the square of distance measured from the heterostructure interfaces is derived self-consistently. This potential is used to solve the time-independent Schrodinger equation for bound state energies and wave functions within the framework of the Wentzel, Kramers, and Brillouin (WKB) approximation. The theoretical results obtained from the WKB approximation are limited to wide gap semiconductors with large split off bands such as gallium arsenide-gallium aluminum arsenide and indium gallium arsenide—indium phosphide. Quantum wells with finite confinement heights give rise to an energy dependent WKB phase. External electric and magnetic fields are incorporated into the theory for two different geometries. For electric fields applied perpendicular to the heterostructure multilayers, QCS shifts and PLQ are found to be in excellent agreement with the WKB calculations. Orthogonality between electrons and holes gives rise to interband mixing in the presence of an external electric field. On the contrary, intraband mixing between light and heavy holes is not sufficiently accounted for in the WKB approximation.
Date: August 1989
Creator: Wallace, Andrew B.

A Gauge-Invariant Energy Variational Principle Application to Anisotropic Excitons in High Magnetic Fields

Description: A new method is developed for treating atoms and molecules in a magnetic field in a gauge-invariant way using the Rayleigh-Ritz energy variational principle. The energy operator depends on the vector potential which must be chosen in some gauge. In order to adapt the trial wave function to the gauge of the vector potential, the trial wave function can be multiplied by a phase factor which depends on the spatial coordinates. When the energy expectation value is minimized with respect to the phase function, the equation for charge conservation for stationary states is obtained. This equation can be solved for the phase function, and the solution used in the energy expectation value to obtain a gauge-invariant energy. The method is applicable to all quantum mechanical systems for which the variational principle can be applied. It ensures satisfaction of the charge conservation condition, a gauge-invariant energy, and the best upper bound to the ground-state energy which can be obtained for the form of trial wave function chosen.
Date: December 1983
Creator: Kennedy, Paul K. (Paul Kevin)

Infrared-Microwave Double Resonance Probing of the Population-Depopulation of Rotational States in the NO₂ and the SO₂ Molecules

Description: A 10.6 ym C02 laser operating a power range S P 200 watts was used to pump some select vibrational transitions in the NO2 molecule while monitoring the rotational transitions (91/9—'100/10), (232f 22 ~~"*242,23> ' (402,38 "393,37) in the (0, 0, 0) vibrational level and the (8q,8—*"^1,7) rotational transition in the (0, 1, 0) vibrational level. These rotational transitions were monitored by microwave probing to determine how the population of states in the rotational manifolds were being altered by the laser. Coincidences between some components of the V3-V2 band of N02 and the C02 infrared laser lines in the 10 um region appeared to be responsible for the strong interaction between the continuous laser beams and the molecular states.
Date: December 1982
Creator: Khoobehi, Bahram

Investigation of the Interaction of CO Laser Radiation with n-InSb

Description: The Shubnikov-de Haas magneto-resistance oscillations and photoconductivity were experimentally studied in order to investigate the interaction of CO laser radiation with n-InSb at liquid helium temperatures. The roles of various absorption mechanisms on these effects were considered, particularly near the intrinsic band edge. From these measurements an effective electron temperature Tₑ was defined that increased or decreased under illumination, depending upon the strength of the applied electric field.
Date: December 1982
Creator: Hanes, Larry Kenneth

K-, L-, and M-Shell X-Ray Production Cross Sections for Beryllium, Aluminum and Argon Ions Incident Upon Selected Elements

Description: Incident 0.5 to 2.5 MeV charged particle beams were used to ionize the inner-shells of selected targets and study their subsequent emission of characteristic x-rays. ⁹Be⁺ ions were used to examine K-shell x-ray production from thin F, Na, Al, Si, P, Cl, and K targets, L-shell x-ray production from thin Cu, An, Ge, Br, Zr and Ag targets, and M-shell x-ray production from thin Pr, Nd, Eu, Dy, Ho, Hf, W, Au, Pb and Bi targets. L-shell x-ray production cross sections were also measured for ²⁷Al⁺ ions incident upon Ni, Cu, Zn, As, Zr, and Pd targets. M-shell x-ray production cross sections were measure for ²⁷Al⁺ and ⁴⁰Ar⁺ ions incident upon Pr, Nd, Gd, Dy, Lu, Hf, Au, Pb, Bi, and U targets. These measurements were performed using the 2.5 MV Van de Graaff accelerator at North Texas State University. The x-rays were detected with a Si(Li) detector whose efficiency was determined by fitting a theoretical photon absorption curve to experimentally measure values. The x-ray yields were normalized to the simultaneously measured Rutherford backscattered (RBS) yields which resulted in an x-ray production cross section per incident ion. The RBS spectrum was obtained using a standard surface barrier detector calibrated for to account for the "pulse height defect." The experimental results are compared to the predictions of both the first Born and ECPSSR theories; each of which is composed of two parts, the direct ionization (DI) of the target electron to the continuum and the capture (EC) of the target electron to the projectile. The first Born describes DI by the Plane-Wave-Born-Approximation (PWBA) and EC by the Oppenheimer-Brinkman-Kramers treatment of Nikolaev (OBKN). ECPSSR expands upon the first Born by using perturbed (PSS) and relativistic (R) target electron wave functions in addition to considering the energy loss (E) of the projectile in ...
Date: December 1986
Creator: Price, Jack Lewis

Linewidth Parameters, Dipole Moments, and Microwave Spectrum of Nitrogen-Substituted Methyl Cyanide

Description: The shape of collision-broadened microwave absorption lines is reviewed, along with a number of other broadening mechanisms. The Anderson and Murphy-Boggs linewidth theories are reviewed in detail. Several published modifications to these theories are reviewed. Computer programs which numerically evaluate linewidths and lineshifts are presented. Approximations are made to reduce the need for extensive use of the modified Bessel functions, thereby reducing computation time. Only dipole-dipole forces are considered.
Date: August 1981
Creator: Messer, James Keith

Low-Velocity K-Shell Ionization Cross Sections for Protons, Deuterons and Alpha Particles Bombarding Thin Metal Targets

Description: The purpose of this work was to examine the effect of the use the assumption κω2K/ΕCM «1 in calculating K-shell ionization cross sections in the plane wave Born approximation (PWBA) where κω2K is the observed binding energy of the K-shell and ECM is the energy of the incident particle in the center of mass system. Avoiding this assumption produces a threshold for ionization at Ecm = κω2K. Calculations employing the assumption, which leads to the use of approximate limits of integration, do not go to zero for even the .Lowest values of the incident energy.
Date: May 1981
Creator: Rice, Roger Karl

M-Shell X-Ray Production of Gold, Lead, Bismuth, Uranium for Incident Hydrogen, Helium and Fluorine Ions

Description: Incident ¹H⁺ and ⁴He⁺ ions at 0.3-2.6 MeV and ¹⁹F^q⁺ ions at 25, 27 and 35 MeV were used to study the M-shell x-ray production cross sections of Au, Pb, Bi and U. For the incident fluorine ions, projectile charge state dependence of the cross sections were extracted from measurements made with varying target thicknesses ( ~1 to ~300 μg/cm²). The efficiency of the Si(Li) detector was determined by measuring the K-shell x-ray production of various low Z elements and comparing these values to the prediction of the CPSS theory. The experimental results are compared to the prediction of first Born approximation for direct ionization to the continuum and to the OBK of Nikolaev for the electron capture to the K-, L-, M-...shells of the incident ion. Comparison is also made with the ECPSSR theory that accounts for the energy loss, Coulomb deflection, and relativistic effects in the perturbed stationary state theory.
Date: December 1982
Creator: Mehta, Rahul

Microwave Properties of Hyaluronate Solutions Using a Resonant Microwave Cavity as a Probe

Description: Physiological functions of a biomacromolecule seem to be closely related to its molecular conformations. The knowledge of any conformational changes due to changes in its environment may lead to a proper understanding of its functions. Hyaluronic acid, a biomacromolecule with unusually high molecular weight and some important biological functions is the subject of the present work. A temperature-dependent transition in hyaluronate solution of 120 mg/ml concentration was observed at physiological temperature. It is shown that this temperature-dependent behavior can be related to the orientational polarizability term in the Debye theory of polar molecules in liquids.
Date: May 1980
Creator: Jani, Shirish K.

Microwave Spectra of ¹³C Isotopic Species of Methyl Cyanide in the Ground, v₈=1 and v₈=2 Vibrational States

Description: The problem of the quadrupole interaction occurring in a vibrating-rotating C₃v symmetric top molecule has been studied in detail. The quadrupole interaction has been treated as another perturbation term to a general frequency expression accounting for the vibrating-rotating interaction of the molecule so that a complete frequency formula is obtained for both interactions, and from which hyperfine spectral components are predicted and measured. The hyperfine transitions in the ground, and v₈=1 and v₈=2 excited vibrational states of the ¹³C isotopes of methyl cyanide have been investigated in the frequency range 17-72 GHz, primarily in the low J transitions (0≤J≤3). The study of the ground state of isotope i3CH3i3CN, and the v₈=1, v₈=2 excited vibrational states for all the isotopes have been conducted here for the first time. A substantial perturbation has been discovered and discussed at the ΔJ=3→4 transitions within the Kl=1 sets in the v₈=1 mode for isotopes ¹³CH₃CN and CH₃¹³CN. A total of 716 hyperfine transitions have been assigned from measurements, only 7 of which have been measured previously. A total of 84 molecular constants have been reported; 70 of these constants are derived for the first time from microwave data.
Date: May 1988
Creator: Tam, Hungsze

Nonlinear Absorption Initiated Laser-Induced Damage in [Gamma]-Irradiated Fused Silica, Fluorozirconate Glass and Cubic Zirconia

Description: The contributions of nonlinear absorption processes to laser-induced damage of three selected groups of transparent dielectrics were investigated. The studied materials were irradiated and non-irradiated fused silica, doped and undoped fluorozirconate glass and cubic zirconia stabilized with yttria. The laser-induced damage thresholds, prebreakdown transmission, and nonlinear absorption processes were studied for several specimens of each group. Experimental measurements were performed at wavelengths of 1064 nm and 532 nm using nanosecond and picosecond Nd:YAG laser pulses. In the irradiated fused silica and fluorozirconate glasses, we found that there is a correlation between the damage thresholds at wavelength λ and the linear absorption of the studied specimens at λ/2. In other words, the laser-induced breakdown is related to the probability of all possible two-photon transitions. The results are found to be in excellent agreement with a proposed two-photon-initiated electron avalanche breakdown model. In this model, the initial "seed" electrons for the formation of an avalanche are produced by two-photon excitations of E' centers and metallic impurity levels which are located within the bandgaps of irradiated Si02 and fluorozirconate glasses, respectively. Once the initial electrons are liberated in the conduction band, a highly absorbing plasma is formed by avalanche impact ionization. The resultant heating causes optical damage. In cubic zirconia, we present direct experimental evidence that significant energy is deposited in the samples at wavelength 532 nm prior to electron avalanche formation. The mechanism is found to be due to formation of color centers (F+ or F° centers) by the two-photon absorption process. The presence of these centers was directly shown by transmission measurements. The two-photon absorption (2PA) process was independently investigated and 2PA coefficients obtained. The accumulated effects of the induced centers on the nonlinear absorption measurements were also considered and the 2PA coefficients were measured using short pulses where this effect ...
Date: August 1988
Creator: Mansour, Nastaran

Nonlinear Absorption Techniques and Measurements in Semiconductors

Description: We have conducted a detailed experimental and theoretical study of nonlinear absorption in semiconductors. Experimental measurements were made on a variety of materials at wavelengths of 1.06 and 0.53 microns using a picosecond Nd:YAG laser. Both two- and three-photon processes were investigated. Values of nonlinear absorption coefficients extracted from these measurements show excellent agreement with recent theory and scaling rules. Our theoretical investigation has been carried out for two-, three-,and n-photon absorption, for both continuous and pulsed sources. Expressions are obtained for the transmission of the sample in terms of the incident irradiance for each case. The physical interpretation of these results is discussed. We have also considered the effects of the photogenerated carriers on the measurements. Equations are developed that include linear absorption by these carriers. We have observed severe distortions on the transmitted beam, caused by changes in the refractive index of the material, due to the presence of these carriers. We present a model that accurately describes these effects in terms of the photogenerated carrier density. We have developed several novel techniques for monitoring nonlinear absorption. In particular, we have adapted the photoacoustic technique to the measurement of nonlinear absorption in semiconductors. We have also developed a technique employing irradiance modulation to greatly enhance the sensitivity to nonlinear processes and simultaneously discriminate against linear background signals. A related technique has been used to observe coherent mixing effects in semiconductors with cw, modelocked dye lasers.
Date: August 1985
Creator: Woodall, Milton Andrew

Operator Gauge Transformations in Nonrelativistic Quantum Electrodynamics

Description: A system of nonrelativistic charged particles and radiation is canonically quantized in the Coulomb gauge and Maxwell's equations in quantum electrodynamics are derived. By requiring form invariance of the Schrodinger equation under a space and time dependent unitary transformation, operator gauge transformations on the quantized electromagnetic potentials and state vectors are introduced. These gauge transformed potentials have the same form as gauge transformations in non-Abelian gauge field theories. A gauge-invariant method for solving the time-dependent Schrodinger equation in quantum electrodynamics is given. Maxwell's equations are written in a form which holds in all gauges and which has formal similarity to the equations of motion of non-Abelian gauge fields. A gauge-invariant derivation of conservation of energy in quantum electrodynamics is given. An operator gauge transformation is made to the multipolar gauge in which the potentials are expressed in terms of the electromagnetic fields. The multipolar Hamiltonian is shown to be the minimally coupled Hamiltonian with the electromagnetic potentials in the multipolar gauge. The model of a charged harmonic oscillator in a single-mode electromagnetic field is considered as an example. The gauge-invariant procedure for solving the time-dependent Schrodinger equation is used to obtain the gauge-invariant probabilities that the oscillator is in an energy eigenstate For comparison, the conventional approach is also used to solve the harmonic oscillator problem and is shown to give gauge-dependent amplitudes.
Date: December 1982
Creator: Gray, Raymond Dale

Parametric Studies of Picosecond Laser-Induced Breakdown in Fused Quartz and NaCl

Description: Bulk laser-induced breakdown and self-focusing in single samples of fused quartz and NaCl were examined using picosecond optical pulses at 1.0 ym and 0.5 ym. The results of three separate but related experiments are reported. First the nonlinear index of refraction, n2, of each of the test materials is measured near the respective damage thresholds of the samples. The values of 1*2 were determined by detecting beam distortions in the far field, transmitted laser beam profile caused by the irradiance dependent index of refraction. The experimental traces were compared to theoretical beam profiles generated by a nonlinear propagation code and n2 was extracted from the resulting fits.
Date: December 1984
Creator: Williams, William Ely