UNT Libraries - Browse


Hamiltonian cycles in subset and subspace graphs.

Description: In this dissertation we study the Hamiltonicity and the uniform-Hamiltonicity of subset graphs, subspace graphs, and their associated bipartite graphs. In 1995 paper "The Subset-Subspace Analogy," Kung states the subspace version of a conjecture. The study of this problem led to a more general class of graphs. Inspired by Clark and Ismail's work in the 1996 paper "Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and their Q-Analogues," we defined subset graphs, subspace graphs, and their associated bipartite graphs. The main emphasis of this dissertation is to describe those graphs and study their Hamiltonicity. The results on subset graphs are presented in Chapter 3, on subset bipartite graphs in Chapter 4, and on subspace graphs and subspace bipartite graphs in Chapter 5. We conclude the dissertation by suggesting some generalizations of our results concerning the panciclicity of the graphs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2004
Creator: Ghenciu, Petre Ion

Hyperbolic Monge-Ampère Equation

Description: In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2006
Creator: Howard, Tamani M.

Hyperspace Topologies

Description: In this paper we study properties of metric spaces. We consider the collection of all nonempty closed subsets, Cl(X), of a metric space (X,d) and topologies on C.(X) induced by d. In particular, we investigate the Hausdorff topology and the Wijsman topology. Necessary and sufficient conditions are given for when a particular pseudo-metric is a metric in the Wijsman topology. The metric properties of the two topologies are compared and contrasted to show which also hold in the respective topologies. We then look at the metric space R-n, and build two residual sets. One residual set is the collection of uncountable, closed subsets of R-n and the other residual set is the collection of closed subsets of R-n having n-dimensional Lebesgue measure zero. We conclude with the intersection of these two sets being a residual set representing the collection of uncountable, closed subsets of R-n having n-dimensional Lebesgue measure zero.
Date: August 2001
Creator: Freeman, Jeannette Broad

Infinite Planar Graphs

Description: How many equivalence classes of geodesic rays does a graph contain? How many bounded automorphisms does a planar graph have? Neimayer and Watkins studied these two questions and answered them for a certain class of graphs. Using the concept of excess of a vertex, the class of graphs that Neimayer and Watkins studied are extended to include graphs with positive excess at each vertex. The results of this paper show that there are an uncountable number of geodesic fibers for graphs in this extended class and that for any graph in this extended class the only bounded automorphism is the identity automorphism.
Date: May 2000
Creator: Aurand, Eric William

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Description: Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2009
Creator: Bajracharya, Neeraj

Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

Description: We establish the existence of radial solutions to the p-Laplacian equation ∆p u + f(u)=0 in RN, where f behaves like |u|q-1 u when u is large and f(u) < 0 for small positive u. We show that for each nonnegative integer n, there is a localized solution u which has exactly n zeros. Also, we look for radial solutions of a superlinear Dirichlet problem in a ball. We show that for each nonnegative integer n, there is a solution u which has exactly n zeros. Here we give an alternate proof to that which was given by Castro and Kurepa.
Date: May 2008
Creator: Pudipeddi, Sridevi

Lyapunov Exponents, Entropy and Dimension

Description: We consider diffeomorphisms of a compact Riemann Surface. A development of Oseledec's Multiplicative Ergodic Theorem is given, along with a development of measure theoretic entropy and dimension. The main result, due to L.S. Young, is that for certain diffeomorphisms of a surface, there is a beautiful relationship between these three concepts; namely that the entropy equals dimension times expansion.
Date: August 2004
Creator: Williams, Jeremy M.

Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

Description: The goal of this thesis is to study of the evolution of 3D electrically charged liquid droplets of fluid evolving under the influence of surface tension and electrostatic forces. In the first part of the thesis, an appropriate mathematical model of the problem is introduced and the linear stability analysis is developed by perturbing a sphere with spherical harmonics. In the second part, the numerical solution of the problem is described with the use of the boundary elements method (BEM) on an adaptive mesh of triangular elements. The numerical method is validated by comparison with exact solutions. Finally, various numerical results are presented. These include neck formation in droplets, the evolution of surfaces with holes, singularity formation on droplets with various symmetries and numerical evidence that oblate spheroids are unstable.
Date: May 2006
Creator: Vantzos, Orestis

Maximum-Sized Matroids with no Minors Isomorphic to U2,5, F7, F7¯, OR P7

Description: Let M be the class of simple matroids which do not contain the 5-point line U2,5 , the Fano plane F7 , the non-Fano plane F7- , or the matroid P7 , as minors. Let h(n) be the maximum number of points in a rank-n matroid in M. We show that h(2)=4, h(3)=7, and h(n)=n(n+1)/2 for n>3, and we also find all the maximum-sized matroids for each rank.
Date: May 2000
Creator: Mecay, Stefan Terence

A New Algorithm for Finding the Minimum Distance between Two Convex Hulls

Description: The problem of computing the minimum distance between two convex hulls has applications to many areas including robotics, computer graphics and path planning. Moreover, determining the minimum distance between two convex hulls plays a significant role in support vector machines (SVM). In this study, a new algorithm for finding the minimum distance between two convex hulls is proposed and investigated. A convergence of the algorithm is proved and applicability of the algorithm to support vector machines is demostrated. The performance of the new algorithm is compared with the performance of one of the most popular algorithms, the sequential minimal optimization (SMO) method. The new algorithm is simple to understand, easy to implement, and can be more efficient than the SMO method for many SVM problems.
Date: May 2009
Creator: Kaown, Dougsoo

On the density of minimal free subflows of general symbolic flows.

Description: This paper studies symbolic dynamical systems {0, 1}G, where G is a countably infinite group, {0, 1}G has the product topology, and G acts on {0, 1}G by shifts. It is proven that for every countably infinite group G the union of the minimal free subflows of {0, 1}G is dense. In fact, a stronger result is obtained which states that if G is a countably infinite group and U is an open subset of {0, 1}G, then there is a collection of size continuum consisting of pairwise disjoint minimal free subflows intersecting U.
Date: August 2009
Creator: Seward, Brandon Michael

The Pettis Integral and Operator Theory

Description: Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2001
Creator: Huettenmueller, Rhonda

Quantization Dimension for Probability Definitions

Description: The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would also be expected that the results in this dissertation would extend to all probabilities for which a quantization dimension function exists. The cases considered here include probabilities generated by conformal iterated function systems (and include self-similar probabilities) and also probabilities generated by graph directed systems, which further generalize the idea of an iterated function system.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Lindsay, Larry J.

Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field

Description: It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the in&#64258;uence of an externally imposed uniform magnetic &#64257;eld. We &#64257;nd that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic &#64257;eld direction.
Date: May 2003
Creator: Hoq, Qazi Enamul

Spaces of Compact Operators

Description: In this dissertation we study the structure of spaces of operators, especially the space of all compact operators between two Banach spaces X and Y. Work by Kalton, Emmanuele, Bator and Lewis on the space of compact and weakly compact operators motivates much of this paper. Let L(X,Y) be the Banach space of all bounded linear operators between Banach spaces X and Y, K(X,Y) be the space of all compact operators, and W(X,Y) be the space of all weakly compact operators. We study problems related to the complementability of different operator ideals (the Banach space of all compact, weakly compact, completely continuous, resp. unconditionally converging) operators in the space of all bounded linear operators. The structure of Dunford-Pettis sets, strong Dunford-Pettis sets, and certain spaces of operators is studied in the context of the injective and projective tensor products of Banach spaces. Bibasic sequences are used to study relative norm compactness of strong Dunford-Pettis sets. Next, we use Dunford-Pettis sets to give sufficient conditions for K(X,Y) to contain c0.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Ghenciu, Ioana

Spaces of operators containing co and/or l ∞ with an application of vector measures.

Description: The Banach spaces L(X, Y), K(X, Y), Lw*(X*, Y), and Kw*(X*, Y) are studied to determine when they contain the classical Banach spaces co or l ∞. The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of co or l∞ in K(X, Y) or L(X, Y). Results concerning the complementation of the Banach space Kw*(X*, Y) in Lw*(X*, Y) are also explored and how that complementation affects the embedding of co or l ∞ in Kw*(X*, Y) or Lw*(X*, Y). The l p spaces for 1 ≤ p < ∞ are studied to determine when the space of compact operators from one l p space to another contains co. The paper contains a new result which classifies these spaces of operators. Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis as well as a new proof of the fact that l ∞ is prime.
Date: August 2008
Creator: Schulle, Polly Jane

The Study of Translation Equivalence on Integer Lattices

Description: This paper is a contribution to the study of countable Borel equivalence relations on standard Borel spaces. We concentrate here on the study of the nature of translation equivalence. We study these known hyperfinite spaces in order to gain insight into the approach necessary to classify certain variables as either being hyperfinite or not. In Chapter 1, we will give the basic definitions and examples of spaces used in this work. The general construction of marker sets is developed in this work. These marker sets are used to develop several invariant tilings of the equivalence classes of specific variables . Some properties that are equivalent to hyperfiniteness in the certain space are also developed. Lastly, we will give the new result that there is a continuous injective embedding from certain defined variables.
Date: August 2003
Creator: Boykin, Charles Martin

Thermodynamical Formalism

Description: Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.
Date: August 2004
Creator: Chousionis, Vasileios

Topological uniqueness results for the special linear and other classical Lie Algebras.

Description: Suppose L is a complete separable metric topological group (ring, field, etc.). L is topologically unique if the Polish topology on L is uniquely determined by its underlying algebraic structure. More specifically, L is topologically unique if an algebraic isomorphism of L with any other complete separable metric topological group (ring, field, etc.) induces a topological isomorphism. A local field is a locally compact topological field with non-discrete topology. The only local fields (up to isomorphism) are the real, complex, and p-adic numbers, finite extensions of the p-adic numbers, and fields of formal power series over finite fields. We establish the topological uniqueness of the special linear Lie algebras over local fields other than the complex numbers (for which this result is not true) in the context of complete separable metric Lie rings. Along the way the topological uniqueness of all local fields other than the field of complex numbers is established, which is derived as a corollary to more general principles which can be applied to a larger class of topological fields. Lastly, also in the context of complete separable metric Lie rings, the topological uniqueness of the special linear Lie algebra over the real division algebra of quaternions, the special orthogonal Lie algebras, and the special unitary Lie algebras is proved.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Rees, Michael K.

Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World

Description: Euclid's geometry is well-known for its theorems concerning triangles and circles. Less popular are the contents of the tenth book, in which geometry is a means to study quantity in general. Commensurability and rational quantities are first principles, and from them are derived at least eight species of irrationals. A recently republished work by Johannes Kepler contains examples using polygons to illustrate these species. In addition, figures having these quantities in their construction form solid shapes (polyhedra) having origins though Platonic philosophy and Archimedean works. Kepler gives two additional polyhedra, and a simple means for constructing the “divine” proportion is given.
Date: August 2002
Creator: Arthur, Christopher

Uniqueness Results for the Infinite Unitary, Orthogonal and Associated Groups

Description: Let H be a separable infinite dimensional complex Hilbert space, let U(H) be the Polish topological group of unitary operators on H, let G be a Polish topological group and φ:G→U(H) an algebraic isomorphism. Then φ is a topological isomorphism. The same theorem holds for the projective unitary group, for the group of *-automorphisms of L(H) and for the complex isometry group. If H is a separable real Hilbert space with dim(H)≥3, the theorem is also true for the orthogonal group O(H), for the projective orthogonal group and for the real isometry group. The theorem fails for U(H) if H is finite dimensional complex Hilbert space.
Date: May 2008
Creator: Atim, Alexandru Gabriel

Urysohn ultrametric spaces and isometry groups.

Description: In this dissertation we study a special sub-collection of Polish metric spaces: complete separable ultrametric spaces. Polish metric spaces have been studied for quite a long while, and a lot of results have been obtained. Motivated by some of earlier research, we work on the following two main parts in this dissertation. In the first part, we show the existence of Urysohn Polish R-ultrametric spaces, for an arbitrary countable set R of non-negative numbers, including 0. Then we give point-by-point construction of a countable R-ultra-Urysohn space. We also obtain a complete characterization for the set R which corresponding to a R-Urysohn metric space. From this characterization we conclude that there exist R-Urysohn spaces for a wide family of countable R. Moreover, we determine the complexity of the classification of all Polish ultrametric spaces. In the second part, we investigate the isometry groups of Polish ultrametric spaces. We prove that isometry group of an Urysohn Polish R-ultrametric space is universal among isometry groups of Polish R-ultrametric spaces. We completely characterize the isometry groups of finite ultrametric spaces and the isometry groups of countable compact ultrametric spaces. Moreover, we give some necessary conditions for finite groups to be isomorphic to some isometry groups of finite ultrametric spaces.
Date: May 2009
Creator: Shao, Chuang