UNT Libraries - Browse


Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

Description: Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.
Date: December 2002
Creator: Valdes, LeRoy I.

Around the Fibonacci Numeration System

Description: Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.
Date: May 2007
Creator: Edson, Marcia Ruth

A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

Description: Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1
Date: May 2001
Creator: May, Russell J.

Complemented Subspaces of Bounded Linear Operators

Description: For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space of all bounded linear operators. In this dissertation the complementation of various classes of operators in the space of all bounded linear operators is considered. This paper begins with a preliminary discussion of linear bounded operators as well as operator ideals. Let L(X, Y ) be a Banach space of all bounded linear operator between Banach spaces X and Y , K(X, Y ) be the space of all compact operators, and W(X, Y ) be the space of all weakly compact operators. We denote space all operator ideals by O.
Date: August 2003
Creator: Bahreini Esfahani, Manijeh

A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

Description: In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.
Date: August 2008
Creator: Kazemi, Parimah

Dimension spectrum and graph directed Markov systems.

Description: In this dissertation we study graph directed Markov systems (GDMS) and limit sets associated with these systems. Given a GDMS S, by the Hausdorff dimension spectrum of S we mean the set of all positive real numbers which are the Hausdorff dimension of the limit set generated by a subsystem of S. We say that S has full Hausdorff dimension spectrum (full HD spectrum), if the dimension spectrum is the interval [0, h], where h is the Hausdorff dimension of the limit set of S. We give necessary conditions for a finitely primitive conformal GDMS to have full HD spectrum. A GDMS is said to be regular if the Hausdorff dimension of its limit set is also the zero of the topological pressure function. We show that every number in the Hausdorff dimension spectrum is the Hausdorff dimension of a regular subsystem. In the particular case of a conformal iterated function system we show that the Hausdorff dimension spectrum is compact. We introduce several new systems: the nearest integer GDMS, the Gauss-like continued fraction system, and the Renyi-like continued fraction system. We prove that these systems have full HD spectrum. A special attention is given to the backward continued fraction system that we introduce and we prove that it has full HD spectrum. This system turns out to be a parabolic iterated function system and this makes the analysis more involved. Several examples have been constructed in the past of systems not having full HD spectrum. We give an example of such a system whose limit set has positive Lebesgue measure.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2006
Creator: Ghenciu, Eugen Andrei

Dimensions in Random Constructions.

Description: We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
Date: May 2002
Creator: Berlinkov, Artemi

Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Description: In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.
Date: May 2005
Creator: Coiculescu, Ion

Examples and Applications of Infinite Iterated Function Systems

Description: The aim of this work is the study of infinite conformal iterated function systems. More specifically, we investigate some properties of a limit set J associated to such system, its Hausdorff and packing measure and Hausdorff dimension. We provide necessary and sufficient conditions for such systems to be bi-Lipschitz equivalent. We use the concept of scaling functions to obtain some result about 1-dimensional systems. We discuss particular examples of infinite iterated function systems derived from complex continued fraction expansions with restricted entries. Each system is obtained from an infinite number of contractions. We show that under certain conditions the limit sets of such systems possess zero Hausdorff measure and positive finite packing measure. We include an algorithm for an approximation of the Hausdorff dimension of limit sets. One numerical result is presented. In this thesis we also explore the concept of positively recurrent function. We use iterated function systems to construct a natural, wide class of such functions that have strong ergodic properties.
Date: August 2000
Creator: Hanus, Pawel Grzegorz

Exhaustivity, continuity, and strong additivity in topological Riesz spaces.

Description: In this paper, exhaustivity, continuity, and strong additivity are studied in the setting of topological Riesz spaces. Of particular interest is the link between strong additivity and exhaustive elements of Dedekind s-complete Banach lattices. There is a strong connection between the Diestel-Faires Theorem and the Meyer-Nieberg Lemma in this setting. Also, embedding properties of Banach lattices are linked to the notion of strong additivity. The Meyer-Nieberg Lemma is extended to the setting of topological Riesz spaces and uniform absolute continuity and uniformly exhaustive elements are studied in this setting. Counterexamples are provided to show that the Vitali-Hahn-Saks Theorem and the Brooks-Jewett Theorem cannot be extended to submeasures or to the setting of Banach lattices.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Muller, Kimberly O.

Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Description: The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2006
Creator: Alhaddad, Shemsi I.

The Global Structure of Iterated Function Systems

Description: I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].
Date: May 2009
Creator: Snyder, Jason Edward

Hamiltonian cycles in subset and subspace graphs.

Description: In this dissertation we study the Hamiltonicity and the uniform-Hamiltonicity of subset graphs, subspace graphs, and their associated bipartite graphs. In 1995 paper "The Subset-Subspace Analogy," Kung states the subspace version of a conjecture. The study of this problem led to a more general class of graphs. Inspired by Clark and Ismail's work in the 1996 paper "Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and their Q-Analogues," we defined subset graphs, subspace graphs, and their associated bipartite graphs. The main emphasis of this dissertation is to describe those graphs and study their Hamiltonicity. The results on subset graphs are presented in Chapter 3, on subset bipartite graphs in Chapter 4, and on subspace graphs and subspace bipartite graphs in Chapter 5. We conclude the dissertation by suggesting some generalizations of our results concerning the panciclicity of the graphs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2004
Creator: Ghenciu, Petre Ion

Hyperbolic Monge-Ampère Equation

Description: In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2006
Creator: Howard, Tamani M.

Infinite Planar Graphs

Description: How many equivalence classes of geodesic rays does a graph contain? How many bounded automorphisms does a planar graph have? Neimayer and Watkins studied these two questions and answered them for a certain class of graphs. Using the concept of excess of a vertex, the class of graphs that Neimayer and Watkins studied are extended to include graphs with positive excess at each vertex. The results of this paper show that there are an uncountable number of geodesic fibers for graphs in this extended class and that for any graph in this extended class the only bounded automorphism is the identity automorphism.
Date: May 2000
Creator: Aurand, Eric William

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Description: Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Date: December 2009
Creator: Bajracharya, Neeraj

Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

Description: We establish the existence of radial solutions to the p-Laplacian equation ∆p u + f(u)=0 in RN, where f behaves like |u|q-1 u when u is large and f(u) < 0 for small positive u. We show that for each nonnegative integer n, there is a localized solution u which has exactly n zeros. Also, we look for radial solutions of a superlinear Dirichlet problem in a ball. We show that for each nonnegative integer n, there is a solution u which has exactly n zeros. Here we give an alternate proof to that which was given by Castro and Kurepa.
Date: May 2008
Creator: Pudipeddi, Sridevi

Maximum-Sized Matroids with no Minors Isomorphic to U2,5, F7, F7¯, OR P7

Description: Let M be the class of simple matroids which do not contain the 5-point line U2,5 , the Fano plane F7 , the non-Fano plane F7- , or the matroid P7 , as minors. Let h(n) be the maximum number of points in a rank-n matroid in M. We show that h(2)=4, h(3)=7, and h(n)=n(n+1)/2 for n>3, and we also find all the maximum-sized matroids for each rank.
Date: May 2000
Creator: Mecay, Stefan Terence

A New Algorithm for Finding the Minimum Distance between Two Convex Hulls

Description: The problem of computing the minimum distance between two convex hulls has applications to many areas including robotics, computer graphics and path planning. Moreover, determining the minimum distance between two convex hulls plays a significant role in support vector machines (SVM). In this study, a new algorithm for finding the minimum distance between two convex hulls is proposed and investigated. A convergence of the algorithm is proved and applicability of the algorithm to support vector machines is demostrated. The performance of the new algorithm is compared with the performance of one of the most popular algorithms, the sequential minimal optimization (SMO) method. The new algorithm is simple to understand, easy to implement, and can be more efficient than the SMO method for many SVM problems.
Date: May 2009
Creator: Kaown, Dougsoo

The Pettis Integral and Operator Theory

Description: Let (Ω, Σ, µ) be a finite measure space and X, a Banach space with continuous dual X*. A scalarly measurable function f: Ω→X is Dunford integrable if for each x* X*, x*f L1(µ). Define the operator Tf. X* → L1(µ) by T(x*) = x*f. Then f is Pettis integrable if and only if this operator is weak*-to-weak continuous. This paper begins with an overview of this function. Work by Robert Huff and Gunnar Stefansson on the operator Tf motivates much of this paper. Conditions that make Tf weak*-to-weak continuous are generalized to weak*-to­weak continuous operators on dual spaces. For instance, if Tf is weakly compact and if there exists a separable subspace D X such that for each x* X*, x*f = x*fχDµ-a.e, then f is Pettis integrable. This nation is generalized to bounded operators T: X* → Y. To say that T is determined by D means that if x*| D = 0, then T (x*) = 0. Determining subspaces are used to help prove certain facts about operators on dual spaces. Attention is given to finding determining subspaces far a given T: X* → Y. The kernel of T and the adjoint T* of T are used to construct determining subspaces for T. For example, if T*(Y*) ∩ X is weak* dense in T*(Y*), then T is determined by T*(Y*) ∩ X. Also if ker(T) is weak* closed in X*, then the annihilator of ker(T) (in X) is the unique minimal determining subspace for T.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2001
Creator: Huettenmueller, Rhonda

Quantization Dimension for Probability Definitions

Description: The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would also be expected that the results in this dissertation would extend to all probabilities for which a quantization dimension function exists. The cases considered here include probabilities generated by conformal iterated function systems (and include self-similar probabilities) and also probabilities generated by graph directed systems, which further generalize the idea of an iterated function system.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2001
Creator: Lindsay, Larry J.

Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field

Description: It is known that there are nonlinear wave equations with localized solitary wave solutions. Some of these solitary waves are stable (with respect to a small perturbation of initial data)and have nonzero spin (nonzero intrinsic angular momentum in the centre of momentum frame). In this paper we consider vector-valued solitary wave solutions to a nonlinear Klein-Gordon equation and investigate the behavior of these spinning solitary waves under the in&#64258;uence of an externally imposed uniform magnetic &#64257;eld. We &#64257;nd that the only stationary spinning solitary wave solutions have spin parallel or antiparallel to the magnetic &#64257;eld direction.
Date: May 2003
Creator: Hoq, Qazi Enamul